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The appending of real numbers, and also conjugate pairs, to New-

ton spectra is studied to understand circumstances in which the

Newton inequalities are preserved. Appending to a non-Newton

spectrum to achieve the Newton inequalities is also studied. Finally

the translations ofNewton spectra that areNewton are also studied.

A sample result is that any number of positive real numbers may

be appended to a Newton spectrum, to retain the Newton prop-

erty, when the Newton coefficients are positive, while any Newton

spectrummay bemade non-Newton by appending a conjugate pair

with positive real part and sufficiently large imaginary part.
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1. Introduction

A list of complex numbers λ1, . . . , λn (repeats allowed), that is the spectrum of a real matrix (i.e. is

self-conjugate), is called a Newton spectrum [2] if the normalized elementary symmetric functions

c0, c1, . . . , cn

satisfy the Newton inequalities [3]:

Δk = Δk(λ1, . . . , λn) = c2k − ck−1ck+1 � 0, k = 1, . . . , n − 1.
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Here, c0 = 1, and(
n

k

)
ck =

(
n

k

)
ck(λ1, . . . , λn) = Sk = Sk(λ1, . . . , λn) ≡ ∑

1� i1<···<ik � n

λi1 · · · λik , k = 1, . . . , n.

The ck ’s are called Newton coefficients and the sequence of them a Newton sequence if it satisfies

the Newton inequalities.

We began [2] to study Newton spectra (Newton matrices) because of their connection with deter-

minantal inequalities and potential connection with the nonnegative inverse eigenvalue problem.

As was noted by example in [2], a Newton spectrum may fail to remain Newton either when it is

extended by the addition of a real number λn+1 or when it is translated by a constant real number t.

Our purpose here is to elaborate upon both issues. In Section 2,we consider the question ofwhen a real

number may be appended to a Newton spectrum, so that the result is Newton. We will see that this is

the case when the Newton sequence is positive and the real number is positive. In fact, if the Newton

sequence is positive, appending any number of positive numbers results in a Newton sequence that is

also positive. In addition, in Section 3we consider the possibility of adding a conjugate pair of complex

eigenvalues to a Newton spectrum. For sufficiently large imaginary part, the result will not be Newton,

but there is a trade-off with the real part. In Section 4, we consider those translations that preserve

Newton sequences. This was well-developed qualitatively in [2]. After a review of prior results, we

elaborate upon transitions betweenNewton and non-Newton spectra as a function of t. All these issues

admit (different) polynomial analyses. Finally, in Section 5,we analyzewhichnon-Newton spectramay

be made Newton by appending (only) a finite number of 0’s, and we determine precisely how many

0’s need be appended. Other possibilities for augmentation to a Newton spectrum are also considered.

Since any sequence of real elementary symmetric functions S1, . . . , Sn may occur, the sequence of

Newton coefficients c1, . . . , cn may be any real sequence. In fact, a Newton sequence may have any

sequence of signs, and for some sign sequences, e.g. + + − − + + − − · · ·, it is easier to be Newton

than for other sequences of signs, but with the same absolute values. We call a Newton sequence for

which each ck > 0 positive Newton or p-Newton for short. Any re-signing of a p-Newton sequence

is Newton. Nonetheless, positive sequences are often easier to deal with technically, and, for the most

part, prior authors have discussed only p-Newton sequences, though it has long been known [1,4]

that any real spectrum is Newton (see [1] for a nice proof). Some of our results will be about positive

Newton coefficients.

Thus, we recall circumstances that produce positive Newton coefficients, or, equivalently, positive

S1, . . . , Sn. Ifλ1, . . . , λn are in the right half-plane (RHP), then it is known and easy to prove inductively

that

Sk(λ1, . . . , λn) > 0, k = 1, . . . , n

and, thus, that

ck(λ1, . . . , λn) > 0, k = 1, . . . , n.

(Just use the obvious identities

Sk(λ1, . . . , λn, λn+1) = Sk(λ1, . . . , λn) + λn+1Sk−1(λ1, . . . , λn)

if λn+1 is real and

Sk(λ1, . . . , λn, λn+1, λn+1 ) = Sk(λ1, . . . , λn) + 2Re(λn+1)Sk−1(λ1, . . . , λn)

+ |λn+1|2Sk−2(λ1, . . . , λn)

if λn+1, λn+1 is a conjugate pair, with natural conventions when k is small.)

The converse, however, is not generally true, unless λ1, . . . , λn ∈ IR.

Example. The spectrum {3,−1 + i3,−1 − i3} clearly is not in the RHP and its Newton coefficients are

all positive: c0 = 1, c1 = 1/3, c2 = 4/3 and c3 = 30.

Thus, the assumption that the Newton coefficients are positive, whichwe often use, ismore general

than that the eigenvalues lie in the RHP. A matrix that has positive principal minors is a P-matrix and
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one that has positive Sk ’s (ck ’s) is sometimes called aQ-matrix. It is not knownwhether the latter have

more general spectra.

A spectrum λ1, . . . , λn that does not have positive Newton coefficients may often be embedded in

one that does. In fact, the spectrummay be so embedded if and only if it does not include a nonpositive

real number. Just as with Newton spectra, it is difficult to describe the spectra for which the ck ’s

are positive. We mention several situations in which a non-Newton spectrum may be embedded in

a Newton one, but in general this question seems to be open. It is likely that any one may be so

embedded.

2. Real extensions of Newton spectra

Since a spectrum consisting entirely of real numbers is known to be Newton [1], extensions of a

real sequence by a real number will necessarily be Newton. Moreover, it might be expected that a real

extension of any Newton spectrum is Newton. Since this is not true, perhaps it will be truemost of the

time. We show a sense in which this is so, and give broad circumstances in which all real extensions

are Newton.

Given a Newton spectrum λ1, . . . , λn−1, our analysis is to view Δk(λ1, . . . , λn) as a function of λn.

As such, it turns out to be a quadratic function with coefficients involving n, k and ck−2, ck−1, ck, ck+1

all evaluated at λ1, . . . , λn−1.

Remark 1. Throughout this section we will adopt the following notation for a fixed self-conjugate

spectrum λ1, . . . , λn−1:

• When ck or Δk are not evaluated in a general spectrum, it will mean that they are evaluated on

the fixed spectrum λ1, . . . , λn−1.• ck(λn) and Δk(λn) are the kth Newton coefficient and the kth Newton difference, respectively,

of the spectrum λ1, . . . , λn−1, λn, where λn ∈ �.

Lemma 2. Let λ1, . . . , λn−1 be self-conjugate and let

ck =
⎧⎨
⎩
1 for k = 0

ck(λ1, . . . , λn−1) for k = 1, . . . , n − 1

0 for k > n − 1 or k < 0.

Then, for any λn ∈ �

ck(λ1, . . . , λn) = n − k

n
ck + k

n
λnck−1, k = 0, . . . , n

and for k = 1, . . . , n − 1,

n2Δk(λ1, . . . , λn)=λ2
n

[
k2c2k−1 − (k2 − 1)ck−2ck

]
+λn [(k(n − k) − (n + 1))ckck−1 − (k(n − k) − (n − 1))ck+1ck−2]

+
[
(n − k)2c2k −

(
(n − k)2 − 1

)
ck+1ck−1

]
.

In particular,

n2Δ1(λ1, . . . , λn)=(λn − c1)
2 + n(n − 2)Δ1(λ1, . . . , λn−1) � 0, ∀λn ∈ �,

n2Δn−1(λ1, . . . , λn)=(λncn−2 − cn−1)
2 + n(n − 2)λ2

nΔn−2(λ1, . . . , λn−1) � 0, ∀λn ∈ �.

If the sequence c0, c1, . . . , cn−1 does not contain two consecutive 0’s and λ1, . . . , λn−1 is a Newton

spectrum, then the coefficient ofλ2
n and the constant term for the function n2Δk(λ1, . . . , λn), when viewed

as a quadratic function in λn, are positive.
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Proof. Note that

Sk(λ1, . . . , λn) =
⎧⎨
⎩
1 for k = 0

Sk(λ1, . . . λn−1) + λnSk−1(λ1, . . . , λn−1) for k = 1, . . . , n − 1

λnSn−1(λ1, . . . , λn−1) for k = n.

Therefore

ck(λ1, . . . , λn) = Sk(λ1, . . . , λn)(
n

k

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 0(
n − 1

k

)
(
n

k

) ck +
λn

(
n − 1

k − 1

)
(
n

k

) ck−1 = n−k
n

ck + k
n
λnck−1 if 1� k � n − 1

λnSn−1(λ1, . . . , λn−1)(
n

n

) = λncn−1 if k = n.

From the definition, Δk(λ1, . . . , λn) is[
n − k

n
ck + k

n
λnck−1

]2
−

[
n − k + 1

n
ck−1 + k − 1

n
λnck−2

] [
n − k − 1

n
ck+1 + k + 1

n
λnck

]
,

so that

n2Δk(λ1, . . . , λn)=λ2
n

[
k2c2k−1 − (k − 1)(k + 1)ck−2ck

]

+λn

⎡
⎣2k(n − k)ckck−1 − (k − 1)(n − k − 1)ck−2ck+1

−(n − k + 1)(k + 1)ck−1ck

⎤
⎦

+
[
(n − k)2c2k − (n − k + 1)(n − k − 1)ck−1ck+1

]
and the expression given in the lemma is clear.

Let k ∈ {1, . . . , n}. The first coefficient of n2Δk(λ1, . . . , λn) as a function of λn is

k2c2k−1 − (k2 − 1)ck−2ck = (k2 − 1)Δk−1(λ1, . . . , λn−1) + c2k−1

which clearly is positive if ck−1 /= 0. Otherwise,Δk−1(λ1, . . . , λn−1) = −ck−2ck and this coefficient is

also positive under the assumption about the sequence c0, c1, . . . , cn−1 not containing two consecutive

0’s. A similar argument is applied to the last coefficient of n2Δk(λ1, . . . , λn) as a function of λn. �

Theorem 3. Let λ1, . . . , λn−1, with n� 4, be a Newton spectrum such that the sequence ck = ck(λ1, . . . ,
λn−1), k = 0, 1, . . . , n − 1, does not contain two consecutive 0’s. Then, except for λn lying in a collection

of at most n − 3 finite, open, real intervals, for any real λn, the spectrum λ1, . . . , λn is also Newton. That

is, λn /∈ ∪n−2
k=2 Ik where Ik is the open interval whose extremes are the real roots of n2Δk(λ1, . . . , λn−1, λn)

when viewed as a function in λn if the roots are real and different, or Ik = ∅ otherwise.

Proof. Note that the first and the last Newton inequalities for λ1, . . . , λn, are quadratic functions

of λn and are always satisfied, see Lemma 2. The bound comes from the other n − 3 Newton

inequalities. �
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Remark 4. For 2� k � n − 2, with the notation of the previous theorem, define

ak=k2c2k−1 − (k2 − 1)ck−2ck

bk=(k(n − k) − (n + 1))ckck−1 − (k(n − k) − (n − 1))ck+1ck−2

dk=(n − k)2c2k −
(
(n − k)2 − 1

)
ck+1ck−1.

Then, when b2k > 4akdk , we have

Ik =
⎛
⎝−bk −

√
b2k − 4akdk

2ak
,
−bk +

√
b2k − 4akdk

2ak

⎞
⎠ .

Example. The bound given in the theorem can be attained. The spectrum {−1, 1 ± i} is Newton with

Newton coefficients c0 = 1, c1 = 1/3, c2 = 0, c3 = −2 and {−1, 1 ± i, λ4} is non-Newton if and

only if λ4 ∈ (−3,−3/2) because 16Δ2(−1, 1 ± i, λ4) = 2
9
(λ4 + 3)(2λ4 + 3).

Remark 5. If ck = ck+1 = 0 for a certain k ∈ {1, . . . , n − 2}, n� 4, then

n2Δk+1(λ1, . . . , λn) = −λn[(k + 1)(n − k − 1) − (n − 1)]ck+2ck−1

= −k(n − k − 2)ck+2ck−1λn

is a polynomial in λn of degree one or zero and

n2Δk(λ1, . . . , λn)=λ2
nk

2c2k−1 � 0, ∀λn ∈ �,

n2Δk+2(λ1, . . . , λn)=(n − k − 2)2c2k+2 � 0, ∀λn ∈ �.

Example. The spectrum

{
1,− 1

2
±

√
3

2
i

}
is Newtonwith Newton coefficients c0 = c3 = 1, c1 = c2 =

0 and

{
1,− 1

2
±

√
3

2
i, λ4

}
is non-Newton if and only if λ4 > 0 because 16Δ2

(
1,− 1

2
±

√
3

2
i, λ4

)
=

−λ4.

Theorem 6. Letλ1, . . . , λn−1 beaNewtonspectrumandconsiderΔk(λn) = Δk(λ1, . . . , λn)asaquadratic
function of λn, k = 1, . . . , n − 1. If the discriminant of Δk(λn) is nonpositive, k = 2, . . . , n − 2, then for

any λn ∈ �, λ1, . . . , λn is a Newton spectrum.

Lemma 7. If λ1, . . . , λn−1 are such that

ck(λ1, . . . , λn−1) > 0, k = 1, . . . , n − 1

and λn > 0, then

ck(λ1, . . . , λn−1, λn) > 0, k = 1, . . . , n.

Proof. Wehave ck > 0 if andonly ifSk > 0. SinceSk(λ1, . . . , λn)=Sk(λ1, . . . , λn−1) + λnSk−1(λ1, . . . ,
λn−1), k = 1, . . . , n (with Sn(λ1, . . . , λn−1) = 0), the addition of λn > 0 leaves the Sk ’s positive and,

thus, the ck ’s positive. �

Theorem 8. Ifλ1, . . . , λn−1 is a p-Newton spectrum, then appending any number of positive real numbers

will result in a p-Newton spectrum.

Proof. It is enough to prove the result when appending one real number λn > 0. The expression of

n2Δk(λ1, . . . , λn) from Lemma 2 can be written as:
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(k2 − 1)Δk−1λ
2
n + (k − 1)(n − (k + 1))[ck−1ck − ck−2ck+1]λn

+ ((n − k)2 − 1)Δk + [ck−1λn − ck]2,
whereΔj = Δj(λ1, . . . , λn−1) for j = k − 1, k. Note that under the hypothesis of p-Newton [2, Lemma

9] we have ck−1ck − ck−2ck+1 � 0 and the result is clear. �

Lemma 9. If λ1, . . . , λn−1 are such that ck(λ1, . . . , λn−1) is a strictly alternating sequence (ckck+1 <
0, k = 0, 1, . . . , n − 2) and λn < 0 then ck(λ1, . . . , λn−1, λn) is also a strictly alternating sequence.

Proof. The sign of ck is the same as the sign of Sk . Since Sk(λ1, . . . , λn) = Sk(λ1, . . . , λn−1) +
λnSk−1(λ1, . . . , λn−1), k = 1, . . . , n (with Sn(λ1, . . . , λn−1) = 0), the addition of λn < 0 leaves the

Sk ’s positive for k even and negative for k odd. �

Because a spectrum remains Newton upon negation we have the following result:

Theorem 10. If λ1, . . . , λn−1 is a Newton spectrum such that ck = ck(λ1, . . . , λn−1), k = 0, 1, . . . ,
n − 1 is a strictly alternating real sequence, then appending any number of negative real numbers results

in a Newton spectrum with a strictly alternating sequence of Newton coefficients.

Proof. It is enough to prove the result when appending one real number λn < 0. The spectrum

−λ1, . . . ,−λn−1 is p-Newton, so |ck−1ck| − |ck−2ck+1| � 0 (see [2, Lemma 9]). Then, for the strictly

alternating sequence ck we have

ck−1ck − ck−2ck+1 = −|ck−1ck| + |ck−2ck+1| � 0.

Since the expression of n2Δk(λ1, . . . , λn) from Lemma 2 can be written as:

(k2 − 1)Δk−1λ
2
n + (k − 1)(n − (k + 1))[ck−1ck − ck−2ck+1]λn

+ ((n − k)2 − 1)Δk + [ck−1λn − ck]2,
where Δj = Δj(λ1, . . . , λn−1) for j = k − 1, k, the result is clear. �

Since appending a real number to a Newton spectrum may cause it to fail to be Newton, we know

that the union of Newton spectra need not be Newton. A more compelling example is the following:

Example.TheunionofNewtonspectraneednotbeNewton.Thespectraσ1 = {1, 1}andσ2 = {1,−1 +
i,−1 − i} (Δ1(σ2) = 1

9
andΔ2(σ2) = 2

3
) are Newton but their union σ1, σ2 = {1, 1, 1,−1 + i,−1 −

i} is not Newton because Δ2(σ1, σ2) =
(
− 1

10

)2 − 1
5

1
10

< 0.

An interesting question is to understandwhen the union of Newton spectra is Newton. For example,

if it were always so, any spectrum could be embedded in a Newton spectrum. From Theorem 8, if one

of the spectra has positive ck ’s and the other consists of positive real numbers, then the union of the

two (Newton) spectra is Newton. Is it the case that if both spectra are p-Newton, the union of the two

spectra is p-Newton?

3. Extension of Newton spectra by a conjugate pair of complex numbers

Here, we consider appending to a self-conjugate spectrum of n − 2 eigenvalues a conjugate pair of

complex eigenvalues x ± iy. Our primary purpose is to understand the circumstances under which a

Newton spectrum extends to a Newton spectrum.
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Fig. 1. Curves Δ1(x, y) = Δ2(x, y) = 0 for {a}.

In [2], we algebraically characterized the 3-element spectra, including one complex conjugate pair,

that areNewton. It is useful nowtogive this characterization in geometric terms. Itmaybe thought of as

appending a real eigenvalue to a conjugate pair (necessarily non-Newton) in such a way as to produce

a Newton triple, but we emphasize the appending of a conjugate pair to a real number (necessarily

Newton) to retain the Newton property.

Example. Consider a triple a, x ± iy with a, x, y ∈ � and y > 0. We consider Δ1 and Δ2 as functions

of x and y with a fixed. Then,

Δ1(x, y) = 1

9

(
x − a + √

3 y
) (

x − a − √
3 y

)
and

Δ2(x, y) = 1

9

⎡
⎣(

x − a

2

)2

+
(
y −

√
3

2
a

)2

− a2

⎤
⎦

⎡
⎣(

x − a

2

)2

+
(
y +

√
3

2
a

)2

− a2

⎤
⎦ .

The region in which Δ1(x, y) � 0 is the region, including the x-axis, lying between the lines that pass

through the point (a, 0) = (c1(a), 0) and form angles of ±π
6

with the x-axis. The region in which

Δ2(x, y) � 0 is the region either outside both or inside both of the circles with centers

(
a
2
,±

√
3 a
2

)
and radius |a|. Note that these circles intersect in the points (0, 0) and (a, 0) and the lines given

by Δ1(x, y) = 0 are the tangents to the circles at the point (a, 0). See Fig. 1. Note that when a =
0,Δ2(x, y) = 1

9
(x2 + y2)2 � 0 for any pair (x, y).

To give a more general analysis, we first give formulas relating ck(x, y) = ck(λ1, . . . , λn−2, x +
iy, x − iy) to the ck(λ1, . . . , λn−2) = ck .

Remark 11. Throughout this section we will adopt the following notation for a fixed self-conjugate

spectrum λ1, . . . , λn−2:

• When ck orΔk or Sk are not evaluated in a general spectrum, it will mean that they are evaluated

on the fixed spectrum λ1, . . . , λn−2.• ck(x, y) and Δk(x, y) are the kth Newton coefficient and the kth Newton difference, respectively,

of the spectrum λ1, . . . , λn−1, x ± iy, where x + iy ∈ �.

Lemma 12. For k = 0, 1, . . . , n and with the convention ck = 0 if k /∈ {0, 1, . . . , n − 2},
n(n − 1)ck(x, y) = (n − k)(n − k − 1)ck + 2k(n − k)xck−1 + k(k − 1)(x2 + y2)ck−2.

Proof. Letk ∈ {0, 1, . . . , n}andSk(λ1, . . . , λn−2) = Sk ,with theconventionSk = 0 ifk /∈ {0, 1, . . . , n −
2}. Note that



Author's personal copy

1630 C.R. Johnson et al. / Linear Algebra and its Applications 433 (2010) 1623–1641

Sk(λ1, . . . , λn−2, x + iy, x − iy) = Sk + 2xSk−1 + (x2 + y2)Sk−2

and (
n

k

)
= n(n − 1)

(n − k)(n − k − 1)

(
n − 2

k

)
= n(n − 1)

k(n − k)

(
n − 2

k − 1

)
= n(n − 1)

k(k − 1)

(
n − 2

k − 2

)
Therefore the result is clear. �

Also viewing Δk(λ1, . . . , λn−2, x + iy, x − iy) as a function of x and y,Δk(x, y), we may describe

Δk(x, y) in terms of λ1, . . . , λn−2 fixed as follows:

n2(n − 1)2Δk(x, y) = Ak(x
2 + y2)2 + Bkx(x

2 + y2) + Ck(x
2 + y2) + Dkx

2 + Ekx + Fk

where

Ak=k(k − 1)
[
[(k − 2)(k + 1) + 2]c2k−2 − (k − 2)(k + 1)ck−3ck−1

]
Bk=2(k − 1)

[
[k2(n − k) − k(n + 1)]ck−2ck−1 − (k − 2)(k + 1)(n − k − 1)ck−3ck

]
Ck=k(n − k)

[
2(k − 1)(n − k − 1)ck−2ck − (n − k + 1)(k + 1)c2k−1

]
−(k − 1)(k − 2)(n − k − 1)(n − k − 2)ck−3ck+1

Dk=4
[
k2(n − k)2c2k−1 − (k2 − 1)((n − k)2 − 1)ck−2ck

]
Ek=2(n − k)(n − k − 1)[k(n − k) − (n + 1)]ck−1ck

−2(k − 1)(n − k + 1)(n − k − 1)(n − k − 2)ck−2ck+1

Fk=(n − k)(n − k − 1)
[
(n − k)(n − k − 1)c2k − (n − k + 1)(n − k − 2)ck−1ck+1

]
.

This allows us to give a relatively simple formula forΔ1(x, y), which is very important for our analysis.

Lemma 13. In the notation above, we have (Δ1 = Δ1(λ1, . . . , λn−2) )

n2(n − 1)Δ1(x, y) = 2(n − 2)(x − c1)
2 − 2ny2 + n(n − 2)(n − 3)Δ1.

Proof. For k = 1 we have

A1 = B1 = 0, C1 = −2n(n − 1), D1 = 4(n − 1)2, E1 = −4(n − 1)(n − 2)c1

and

F1 = (n − 1)(n − 2)
[
(n − 1)(n − 2)c21 − n(n − 3)c0c2

]
= (n − 1)(n − 2)

[
n(n − 3)Δ1 + 2c21

]
.

Then,

n2(n − 1)Δ1(x, y)

= −2n(x2 + y2) + 4(n − 1)x2 − 4(n − 2)c1x + n(n − 2)(n − 3)Δ1 + 2(n − 2)c21

= 2(n − 2)x2 − 4(n − 2)c1x − 2ny2 + n(n − 2)(n − 3)Δ1 + 2(n − 2)c21

= 2(n − 2)(x − c1)
2 − 2ny2 + n(n − 2)(n − 3)Δ1. �

Let λ1, . . . , λn−2 be self-conjugate. Then for the region Δ1(x, y) � 0 we have:

• If Δ1(λ1, . . . , λn−2) = 0, then Δ1(x, y) � 0 is the region, including the x-axis, lying between the

lines that pass through the point (c1, 0) and have slopes ±
√

n−2
n

. Note that for n = 3 the angles

of these lines with the x-axis are ±π
6
and as n grows these angles tend to ±π

4
.

• If Δ1(λ1, . . . , λn−2) = Δ1 > 0 and n > 3, then Δ1(x, y) � 0 is the region lying between the

branches of the hyperbola Δ1(x, y) = 0, that is
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y2

(n−2)(n−3)
2

Δ1

− (x − c1)
2

n(n−3)
2

Δ1

= 1.

Note that the asymptotes of this hyperbola are the lines that pass through the point (c1, 0) and

have slopes ±
√

n−2
n

. If n = 3, the region is the one described in the previous point.

• If Δ1(λ1, . . . , λn−2) = Δ1 < 0 and n > 3, then Δ1(x, y) � 0 is the region lying outside the

branches of the hyperbola Δ1(x, y) = 0, that is

(x − c1)
2

n(n−3)
2

|Δ1|
− y2

(n−2)(n−3)
2

|Δ1|
= 1.

Again, its asymptotes are the lines that pass through the point (c1, 0) and have slopes ±
√

n−2
n

and if n = 3, the region is the one described in the first point.

Now, consider not only fixed λ1, . . . , λn−2 but also fixed real part x for the appended conjugate

pair x ± iy. LetA(λ1, . . . , λn−2, x) = A(x) = { y ∈ � : {λ1, . . . , λn−2, x + iy, x − iy} is Newton}. Of
course, A(x) is symmetric about the origin. Since y2 enters negatively into Δ1(x, y), we have the

following:

Theorem 14. Given a Newton spectrum λ1, . . . , λn−2 and a real number x, there is a y0 > 0 such that

A(x) ⊂ [−y0, y0].
Moreover, A(x) is a union of at most 2n − 3 closed intervals and is symmetric about 0.

Proof. It is clear from the previous comments. In fact, we can take

y0 �

√
(n − 2)(n − 3)

2
Δ1 + n − 2

n
(x − c1)2 (1)

which is obtained intersecting Δ1(x, y) = 0 with the vertical line passing through the point (x, 0).
For a fixed x, n2(n − 1)2Δk(x, y) is a polynomial in y of degree at most 2 if k = 1 and of degree at

most 4 if k � 2. This means that in total we have at most 2 + 4(n − 2) real roots, therefore A(x) is a

union of at most 1 + 2(n − 2) = 2n − 3 closed intervals. �

Corollary 15. If λ1, . . . , λn−2 is a p-Newton spectrum, then for each real number x > 0, the set A(x) is

nonempty and includes an interval of positive length if all the Newton inequalities for λ1, . . . , λn−2 are

strict.

Proof. This is a particular case of Theorem 8 taking x + iy = x − iy = x ∈ �. �

Example. We note that the bound (1) for y0, given in the proof of Theorem 14, is increasing in x as x

moves away from c1 = 1
n−2

(λ1 + · · · + λn−2). However, the set A(x) need not be an interval even

when nonempty (see what follows), and when it is an interval, the length of the actual interval may

not increase as wemove away from c1 (see Fig. 1 where the intervalA(x) increases before it decreases
and then increases as x moves leftward away from a = c1).

The spectrum {4,−2} is Newton and the extended spectrum {4,−2, x ± iy} is Newton only in the

region of the complex plane outside the close curves Δ2(x, y) = Δ3(x, y) = 0 of Fig. 2 which is inside

the region bounded by the branches of the hyperbola Δ1(x, y) = 0. Note that A(x) can be a closed

interval or the union of three closed intervals.

The characterization of the curves Δk(x, y) = 0, in general, is quite complex, but when the fixed

spectrum has all its elements equal, λ1 = · · · = λn−2 = a ∈ �, we have for k = n − 1

n2(n − 1)Δn−1(x, y) = 2(n − 2)a2n−6P(x, y)Q(x, y)
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Fig. 2. Curves Δ1(x, y) = Δ2(x, y) = Δ3(x, y) = 0 for {4,−2}.
where

P(x, y) =
⎡
⎣(

x − a

2

)2

+
(
y −

√
n

4(n − 2)
a

)2

− n − 1

2(n − 2)
a2

⎤
⎦

and

Q(x, y) =
⎡
⎣(

x − a

2

)2

+
(
y +

√
n

4(n − 2)
a

)2

− n − 1

2(n − 2)
a2

⎤
⎦ .

That is Δn−1(x, y) � 0 is the region either outside both or inside both of the circles with centers(
a
2
,±√

n
4(n−2)

a
)
and radius

√
n−1

2(n−2)
|a|.

Remark 16. Note that directly from the definitions

cn(a, . . . , a, x + iy, x − iy)=an−2(x2 + y2)

cn−1(a, . . . , a, x + iy, x − iy)= 2an−2x + (n − 2)an−3(x2 + y2)

n

cn−2(a, . . . , a, x + iy, x − iy)= 2an−2 + 4(n − 2)an−3x + (n − 2)(n − 3)an−4(x2 + y2)

n(n − 1)
.

Therefore, thesimplestwayof calculatingΔn−1(x, y) isusing itsdefinition.TheexpressionofΔn−1(x, y),
given in terms of the polynomials P(x, y) and Q(x, y), was obtained by observing, for small n, that

Δn−1(x, y) = 0 can be written as the product of the equations of two circumferences, of the same

radius and centers, symmetric with respect to the x-axis.

4. Translation of Newton spectra

By translation of a spectrum λ1, . . . , λn, we mean transforming it to

λ1 + t, λ2 + t, . . . , λn + t

for some constant t ∈ �, but we will view t as a real variable. Our goal is to understand more fully the

translations of a Newton spectrum that are Newton. This subject was introduced in [2]. Again, since a

list of real numbers is necessarily Newton, translation of any real spectrum remains Newton. However,

translation of a general Newton spectrum need not remain Newton. In [2] low dimensional spectra

that are forever Newton (Newton under all translations), f-Newton, were characterized. Also, Newton
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spectrawithnonnegative ck ’s remainNewtonunderall right translations, t � 0, (of course, thespectrum

eventually becomes p-Newton), while the Newton spectra with alternating sign ck ’s remain Newton

under left translations (t � 0). Finally, the spectra, which eventually become (and stay) Newton under

translation in one direction or the other, were characterized. Here, we are interested in how transitions

(between Newton and non-Newton) may occur as a spectrum is translated.

Now, Δk(λ1 + t, λ2 + t, . . . , λn + t) = Δk(t) may be viewed as a polynomial of degree (at most)

2k in t.

Lemma 17 ([2, Lemma 12]). The polynomial Δk(t) = Δk(λ1 + t, λ2 + t, . . . , λn + t), for k = 1, . . . ,
n − 1, is

2k−2∑
q=0

⎛
⎝ q∑

j=0

[(
k

j

)(
k

q − j

)
−

(
k − 1

j − 1

)(
k + 1

q + 1 − j

)]
ck−jck−(q−j)

⎞
⎠ tq.

where cj = cj(λ1, . . . , λn), j = 0, 1, . . . , n, and 0 otherwise.

From the formula, we see that Δk(t) actually has degree at most 2k − 2 and, thus, has at most

2k − 2 real roots. Each real root, depending upon the behavior of the otherΔ’s, might give a transition

from Newton to non-Newton or vise-versa. Thus,

(n − 1)(n − 2) =
n−1∑
k=1

(2k − 2)

is an upper bound for the number of transitions.

Theorem 18. Suppose that λ1, . . . , λn is a Newton spectrum. Then for t ∈ �, λ1 + t, . . . , λn + t is a

Newton spectrum, except possibly for 1
2
(n − 1)(n − 2) finite open intervals of exceptions. Equivalently,

there are at most (n − 1)(n − 2) transitions between Newton and non-Newton in t.

Wedonot knowa sharp bound for the number of transitions, butwedohave the following evidence

for n� 4.

Example. For n = 2, every Newton spectrum is real, so there are no transitions.

For n = 3 we can have no transitions (any real spectrum), one transition (the 3rd roots of unity

withΔ1(t) = 0 andΔ2(t) = −t) and two transitions ({1, 4 ± i}withΔ1(t) = 2
3
andΔ2(t) = 2

3
t2 +

8t + 166
9

).

For n = 4 we can have:

– no transitions: any real spectrum or {1,−1,±i} with Δ1(t) = Δ2(t) = 0 and Δ3(t) = t2,

– one transition: {1, 3,−2 ± i3} with Δ1(t) = 0,Δ2(t) = −10t and Δ3(t) = −20t3 − 39t2 +
100,

– two transitions: {1,−1, 1 ± i}withΔ1(t) = 1
12
,Δ2(t) = 1

12
t2 + 7

12
t + 5

18
andΔ3(t) = 1

12
t4 +

7
6
t3 + 31

12
t2 + 11

6
t + 7

12
,

– three transitions: roots of the polynomial x4 − 8x3 + 24x2 − 8x + 1 with Δ1(t) = 0,Δ2(t) =
6t + 12 and Δ3(t) = 12t3 + 39t2 + 12t and

– four transitions: {4 ± i,−4 ± i3} with Δ1(t) = 11
3
,Δ2(t) = 11

3
t2 − 16t + 121

9
and Δ3(t) =

11
3
t4 − 32t3 − 1154

3
t2 − 352

3
t + 5443

3
.

It is not possible to have five or six transitions.

Remark 19. Any self-conjugate spectrum contained in a single vertical line, and including some com-

plex eigenvalues, cannot be Newton.

A separate argument for the totally pure imaginary case is the following:Apure imaginary spectrum

is i times a real spectrum that has as many negative as positive elements. Moreover, ck = ikdk if the
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dk ’s are the Newton coefficients for the real spectrum and the ck ’s for the pure imaginary spectrum. So

ck = 0 for all odd k, and c2kc2k+2 � 0, k = 0, . . . , n−2
2

, so that the even indexed c’s strictly alternate

in sign if they are nonzero. This would mean that the even indexed d’s are nonnegative, which is not

possible, as some of the real arguments are negative.

In the case in which the line is Re(z) = 0, and not all eigenvalues are real, it is a calculation to see

that Δ1 < 0. Since Δ1 is translation invariant, such a spectrum is never Newton under translation,

verifying the statement of the remark.

5. Newton extensions of non-Newton spectra

In [2, Lemma 8] we proved that appending 0 to a Newton spectrum gives a Newton spectrum. Now,

we ask if adding zeros to a non-Newton spectrum can make it Newton, and, if this is the case, what is

the minimum number of zeros that make the spectrum Newton. That is, if λ1, . . . , λn is not Newton,

can we add N zeros such that λ1, . . . , λn,

N︷ ︸︸ ︷
0, . . . , 0 is Newton? And what is the minimum N?

First consider small n. For n = 1, there is nothing to study. Note that for n = 2 a non-Newton

spectrum is of the form a ± ib with a, b ∈ � and b > 0.

Theorem 20. Let a ± ib with a, b ∈ � and b > 0. There is a Newton spectrum of the form a ± ib, 0, . . . , 0
if and only if |a| > b. In this event, the minimum number of 0’s that need be appended to a ± ib to achieve

Newton is⌈
2b2

a2 − b2

⌉
.

Proof. Let σ = {a ± ib,

N︷ ︸︸ ︷
0, . . . , 0}. We have

c1(σ ) = 2a(
N + 2

1

) , c2(σ ) = a2 + b2(
N + 2

2

) , ck(σ ) = 0 for k � 3 and Δk(σ ) � 0 for k � 2,

then, σ is Newton if and only if Δ1(σ ) � 0. Since b > 0 and

(N + 2)2(N + 1)Δ1(σ ) = 2(a2 − b2)(N + 2) − 4a2,

Δ1(σ ) � 0 
⇒ a /= 0 and a2 − b2 � 0. Moreover Δ1(σ ) � 0 and a /= 0 
⇒ a2 − b2 /= 0. There-

fore σ Newton 
⇒ a2 − b2 > 0 ⇐⇒ |a| > b.

On the other hand, if a2 − b2 > 0 then

σ is Newton ⇐⇒ N �
2b2

a2 − b2

and

N =
⌈

2b2

a2 − b2

⌉

is the minimum number of zeros. �

Theorem 21. Let a, b ± ic be a non-Newton spectrum with a, b, c ∈ � and c > 0. There is a Newton

spectrum of the form a, b ± ic, 0, . . . , 0 if and only if a2 + 2b2 > 2c2 and 4(2ab + b2 + c2)2 − 6a(a +
2b)(b2 + c2) > 0. In this event, the minimum number of 0’s that need be appended to a, b ± ic to achieve

Newton is

max

{⌈
2[3c2 − (a − b)2]
a2 + 2b2 − 2c2

⌉
,

⌈−2[a2(b2 − 3c2) − 2ab(b2 + c2) + (b2 + c2)2]
a2(5b2 − 3c2) + 2ab(b2 + c2) + 2(b2 + c2)2

⌉}
.
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Proof. Let σ = {a, b ± ic,

N︷ ︸︸ ︷
0, . . . , 0}. a, b ± ic is a non-Newton spectrum if and only if

(a − b)2 < 3c2 or (c2 + b(b − a))2 < 3a2c2 (∗)

We have

c1(σ ) = a+2b(
N + 3

1

) , c2(σ ) = 2ab+b2+c2(
N + 3

2

) , c3(σ ) = a(b2+c2)(
N + 3

3

) , ck(σ ) = 0 for k � 3 and Δk(σ ) � 0 for

k � 3, then, σ is Newton if and only if Δ1(σ ) � 0 and Δ2(σ ) � 0. Since c > 0 and

(N + 3)2(N + 2)Δ1(σ ) = (a2 + 2b2 − 2c2)(N + 3) − (a + 2b)2,

Δ1(σ ) � 0 
⇒ a2 + 2b2 − 2c2 � 0. Moreover if Δ1(σ ) � 0 and a2 + 2b2 − 2c2 = 0 
⇒ a + 2b =
0 and so (a, b) =

(
± 2c√

3
,∓ c√

3

)
, but these two points do not satisfy condition (*), so Δ1(σ ) � 0 
⇒

a2 + 2b2 − 2c2 > 0.

Since c > 0 and

(N + 3)2(N + 2)2(N + 1)Δ2(σ ) = (A − B)(N + 2) − A, with A = 4(2ab + b2 + c2)2

and B = 6a(a + 2b)(b2 + c2),

Δ2(σ ) � 0 
⇒ A − B � 0. Moreover if Δ2(σ ) � 0 and A = B 
⇒ A = 0 
⇒ a /= 0 and so A =
B = 6a(a + 2b)(b2 + c2) = 0 
⇒ a + 2b = 0. Now a + 2b = 0 and A = 0 
⇒ (a, b) =(
± 2c√

3
,∓ c√

3

)
, but these points do not verify the condition (*), so Δ2(σ ) � 0 
⇒ A − B > 0.

On the other hand, if a2 + 2b2 − 2c2 > 0 and A − B > 0 then σ is Newton ⇐⇒

N �
(a + 2b)2

a2 + 2b2 − 2c2
− 3 and N �

A

A − B
− 2

⇐⇒N �max

{
2[3c2 − (a − b)2]
a2 + 2b2 − 2c2

,
−2[a2(b2 − 3c2) − 2ab(b2 + c2) + (b2 + c2)2]
a2(5b2 − 3c2) + 2ab(b2 + c2) + 2(b2 + c2)2

}
. �

A similar analysis is possible, though less explicit, for general n as the next results show.

Lemma 22. Let σ ∗ = {λ1, . . . , λn} ⊂ � be self-conjugate and σ = {λ1, . . . , λn,

N︷ ︸︸ ︷
0, . . . , 0}. Then

ck(σ ) =
⎧⎪⎪⎨
⎪⎪⎩

(
n

k

)
ck(σ

∗)

(N+n
k )

if k = 1, . . . , n

0 if k = n + 1, . . . , n + N

and for k = 1, . . . , N + n − 1

Δk(σ ) =

(
n

k

)2

(
N + n

k

)2

[
ck(σ

∗)2 − (n − k)(N + n − k + 1)

(n − k + 1)(N + n − k)
ck−1(σ

∗)ck+1(σ
∗)

]

with the convention of ck(σ
∗) = 0 for k � n + 1.

Proof. Note that

Sk(σ ) =
{
Sk(σ

∗) if k = 1, . . . , n
0 if k = n + 1, . . . , n + N,

so that the expression for ck(σ ) is clear.
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Using the expression of ck(σ ) in terms of ck(σ
∗), we have

Δk(σ ) =

(
n

k

)2

(
N + n

k

)2
ck(σ

∗)2 −

(
n

k − 1

)(
n

k + 1

)
(
N + n

k − 1

)(
N + n

k + 1

) ck−1(σ
∗)ck+1(σ

∗).

Now, the identities(
n

k − 1

)(
n

k + 1

)
= k(n − k)

(k + 1)(n − k + 1)

(
n

k

)2

(
N + n

k − 1

)(
N + n

k + 1

)
= k(N + n − k)

(k + 1)(N + n − k + 1)

(
N + n

k

)2

make clear the expression for the Δk(σ ) in terms of the Newton coefficients for σ ∗. �

Note that Δk(σ ) � 0 for k � n, so in order to study the Newton character of σ it is enough to check

the sign of the first n − 1 Newton inequalities.

Theorem 23. Let σ ∗ = {λ1, . . . , λn} be a non-Newton spectrum. The following conditions are

equivalent:

1. The spectrum σ = {λ1, . . . , λn,

N︷ ︸︸ ︷
0, . . . , 0} is Newton.

2. For k ∈ {1, . . . , n − 1} with Δk(σ
∗) < 0 we have

(a) ck(σ
∗) /= 0,

(b) (n − k)Δk(σ
∗) + ck(σ

∗)2 > 0 and

(c) N � − (n−k+1)(n−k)Δk(σ
∗)

(n−k)Δk(σ ∗)+ck(σ ∗)2 .

Proof. 1 ⇒ 2 Let k ∈ {1, . . . , n − 1} with Δk(σ
∗) < 0. From Lemma 22(

N + n

k

)2

(n − k + 1)(N + n − k)(
n

k

)2
Δk(σ )

=
[
(n − k + 1)(N + n − k)ck(σ

∗)2 − (n − k)(N + n − k + 1)ck−1(σ
∗)ck+1(σ

∗)
]
, (2)

therefore the nonnegativity of Δk(σ ) is equivalent to the nonnegativity of (2). Note that

(n − k + 1)(N + n − k) = (n − k)(N + n − k + 1) + N,

hence

(2) = (n − k)(N + n − k + 1)Δk(σ
∗) + Nck(σ

∗)2 � 0. (3)

But under the hypothesis Δk(σ
∗) < 0, we have ck(σ

∗) /= 0 and

(3) ⇐⇒ − (n − k)Δk(σ
∗) + ck(σ

∗)2

(n − k + 1)(n − k)Δk(σ ∗)
�

1

N

implies conditions (b) and (c).

2 ⇒ 1 Let k ∈ {1, . . . , n − 1}. As it was shown in the first part of the proof
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(
N+n

k

)2
(n − k + 1)(N + n − k)(

n

k

)2
Δk(σ ) = (n − k)(N + n − k + 1)Δk(σ

∗) + Nck(σ
∗)2,

so if Δk(σ
∗) � 0, then Δk(σ ) � 0. Otherwise, Δk(σ

∗) < 0 and condition (c) is equivalent to the

nonnegativity of (n − k)(N + n − k + 1)Δk(σ
∗) + Nck(σ

∗)2. �

In [2] was pointed out that if λ1, . . . , λn, 0, . . . , 0 is a Newton spectrum with λ1, . . . , λn nonzero,

then λ−1
1 , . . . , λ−1

n , 0, . . . , 0 is not necessarily Newton when adding the same number of zeros. In fact,

it can happen that we can never make λ−1
1 , . . . , λ−1

n Newton by adding zeros.

Example. The spectrum
√

8, 1 ± i2 is Newtonwhenwe add 9 zeros ormore and the spectrum 1√
8
, 1
5

±
i 2
5
cannot be made Newton by appending zeros.

The spectrum
√

8, 1 ± i2 is non-Newton because Δ1 = − 1
3

− 4
√

2
9

< 0 and Δ2 = −7 − 20
√

2
9

<
0. The application of Theorem 23 gives that the minimum number of zeros to add to make it Newton

is 9:

c1 = 2
√

2

3
+ 2

3
/= 0, c2 = 4

√
2

3
+ 5

3
/= 0 (Condition (a))

(3 − 1)Δ1 + c21 = 2

3
> 0, (3 − 2)Δ2 + c22 = −2

3
+ 20

√
2

9
> 0 (Condition (b))

N �max

{ −6Δ1

2Δ1 + c21
,

−2Δ2

Δ2 + c22

}
= max

{
3 + 4

√
2,

63 + 20
√

2

−3 + 10
√

2

}
= 3 + 4

√
2 ≈ 8.6 (Condition (c))

The spectrum 1√
8
, 1
5

± i 2
5
is non-Newton because Δ1 = − 7

200
−

√
2

90
< 0 and the application of The-

orem 23 gives that this spectrum cannot be made Newton by appending zeros:

(3 − 1)Δ1 + c21 = − 23

600
(against condition (b)).

Now, we ask if adding a real number or a conjugate pair of complex numbers to a non-Newton

spectrum can make it Newton. That is, if λ1, . . . , λn is not Newton, is there λn+1 ∈ � or x ± iy ∈ �
such that λ1, . . . , λn, λn+1 or λ1, . . . , λn, x ± iy is Newton?

Example.The spectrum
√

3 ± i is non-Newton, but the spectra
√

3 ± i, a fora� 0and
√

3 ± i,−√
3 ±

i are Newton because:

Δ1

(√
3 ± i, a

)
= a(a − 2

√
3)

9
, Δ2

(√
3 ± i, a

)
= −8

√
3(3a − 2

√
3)

27
,

Δ1

(√
3 ± i,−√

3 ± i
)

= 2

3
, Δ2

(√
3 ± i,−√

3 ± i
)

= 4

9
and Δ3

(√
3 ± i,−√

3 ± i
)

= 32

3
.

The spectrum 1 ± 3i, 1 ± 3i, a is not Newton for any a ∈ �:

Δ1(1 ± 3i, 1 ± 3i, a) =
(
a − 1 − 3

√
5
) (

a − 1 + 3
√

5
)

25
� 0

⇔ a ∈
(
−∞, 1 − 3

√
5
]
∪

[
1 + 3

√
5,+∞

)
,

Δ2(1 ± 3i, 1 ± 3i, a) = − 8

25

(
a + 5 + 3

√
17

4

)(
a + 5 − 3

√
17

4

)
� 0
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⇔ a ∈
[
−5 + 3

√
17

4
,−5 − 3

√
17

4

]

and 1 − 3
√

5 ≈ −5.7 < −5 + 3
√

17

4

≈ − 4.3 < −5 − 3
√

17

4
≈ 1.8 < 1 + 3

√
5 ≈ 7.7.

The spectrum 1 ± 3i, a ± bi is not Newton for any a ± bi ∈ C:

Δ1(1 ± 3i, a ± bi) = 3
2

(
(a−1)2

18
− b2

9
− 1

)
� 0 outside the branches of the hyperbola Δ1(a, b) =

0 and Δ3(1 ± 3i, a ± bi) = −17(a2+b2)2−20a(a2+b2)−100(2b2−a2)
12

< 0 in the previous region because

17(a2 + b2)2 + 20a(a2 + b2) + 100(2b2 − a2) = 17b4 + 2b2(17a2 + 10a + 100) + a2(17a2 + 20a

− 100) and 17a2 + 20a − 100 > 0 for |a − 1| >
√

18, i.e. outside the interval determined by the

x-coordinates of the vertices of the hyperbola Δ1(a, b) = 0. But the spectrum 1 ± 3i,−3, 4 is Newton

because

Δ1(1 ± 3i,−3, 4) = 9

16
, Δ2(1 ± 3i,−3, 4) = 21

8
and Δ3(1 ± 3i,−3, 4) = 49

4
.

Theorem 24. For the conjugate pair b ± ic, with c > 0, one real number a may be adjoined to give a

Newton spectrum, unless |b|/c < 1/
√

3. In this event
(
|b|/c < 1/

√
3
)
, two real numbers b ± c may be

adjoined to produce a Newton spectrum.

Proof. σ = {a, b ± ic} is Newton if and only if (a − b)2 � 3c2 and (c2 + b(b − a))2 � 3a2c2, see [2].

On the one hand (a − b)2 � 3c2 ⇐⇒ a ∈ (−∞, b − √
3c] ∪ [b + √

3c,+∞).
On theother hand (c2 + b(b − a))2 � 3a2c2 ⇐⇒ (b2 − 3c2)a2 − 2b(b2 + c2)a + (b2 + c2)2 � 0,

and the roots, when b2 − 3c2 /= 0, of this quadratic expression in a are

b2 + c2

b ∓ √
3c

.

Note that

0 < b − √
3c <

b2 + c2

b + √
3c

< b + √
3c <

b2 + c2

b − √
3c

when b >
√

3c,

b2 + c2

b − √
3c

< b − √
3c < 0 <

b2 + c2

b + √
3c

< b + √
3c when b ∈

[
c√
3
,
√

3c

)
,

b − √
3c <

b2 + c2

b − √
3c

< 0 < b + √
3c <

b2 + c2

b + √
3c

when b ∈
(
−√

3c,− c√
3

]

and

b2 + c2

b + √
3c

< b − √
3c <

b2 + c2

b − √
3c

< b + √
3c < 0 when b < −√

3c.

Therefore, σ is Newton in the following cases:

b >
√

3c and a ∈
(
−∞, b − √

3c
]
∪

[
b2+c2

b−√
3c
,+∞

)
;

b = √
3c and a ∈ (−∞, 0];

b ∈
[

c√
3
,
√

3c

)
and a ∈

[
b2+c2

b−√
3c
, b − √

3c

]
;

b ∈
(
−√

3c,− c√
3

]
and a ∈

[
b + √

3c, b2+c2

b+√
3c

]
;
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b = −√
3c and a ∈ [0,+∞);

b < −√
3c and a ∈

(
−∞, b2+c2

b+√
3c

]
∪

[
b + √

3c,+∞
)
;

and σ is not Newton if b ∈
(
− c√

3
, c√

3

)
for all a ∈ �; that is, if |b|/c < 1/

√
3.

Foranyb ± ic thespectrumσ = {b ± ic, b ± c} isNewton,because c1(σ ) = b, c2(σ ) = b2, c3(σ ) =
b3, c4(σ ) = b4 − c4 and so Δ1(σ ) = Δ2(σ ) = 0 and Δ3(σ ) = b2c4 � 0. �

We already know that the union of two Newton spectra need not be Newton, but what about the

duplication of aNewton spectrum (the adjoining of it to itself)? That is, ifσ = {λ1, . . . , λn} is aNewton

(non-Newton) spectrum then is σ , σ = {λ1, . . . , λn, λ1, . . . , λn} a Newton (non-Newton) spectrum?

In the real case, it is obvious that σ is Newton if and only if σ , σ is Newton. The answer is negative for

general n.

Example. The Newton inequalities for the spectrum σ =
{√

3 ± i,− 9
10

± i
}
are:

Δ1 = 180
√

3 − 19

1200
> 0, Δ2 = 52290

√
3 − 53939

360000
> 0 and

Δ3 = 130320
√

3 − 157639

120000
> 0.

Then σ is Newton, but its duplication is non-Newton because

Δ3(σ , σ) = − 106517109

490000000
+ 2963151

√
3

24500000
< 0.

On the other, σ , σ can be a Newton spectrum with σ non-Newton. The spectrum σ = {√3 ±
i,−√

2 ± i
√

2} is non-Newton because

Δ2(σ ) = 2
√

6 − 5

9
< 0,

while its duplication is Newton because all the Newton differences are positive:

Δ1(σ , σ) = 2
√

6 − 1

28
, Δ2(σ , σ) = 5

√
6 − 12

49
, Δ3(σ , σ) = 16

√
6 − 36

49
,

Δ4(σ , σ) = 1472
√

6 − 3248

1225
, Δ5(σ , σ) = 256

√
6 − 576

49
,

Δ6(σ , σ) = 1280
√

6 − 3072

49
, Δ7(σ , σ) = 2048

√
6 − 1024

7
.

The next theorem characterize the complex case n = 3.

Theorem 25. Let σ = {a, b ± ic} with a, b, c ∈ � and c > 0. σ is Newton if and only if its duplication

is Newton.

Proof. Without loss of generality we assume that c = 1, then we have

Δ1(σ )= (a − b)2 − 3

9
,

Δ2(σ )= (1 + b(b − a))2 − 3a2

9
,
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Δ1(σ , σ)= 2((a − b)2 − 3)

45
,

Δ2(σ , σ)= a4 + a3b + a2b2 − 11a2 − 9ab3 − 13ab + 6b4 − 6b2 + 4

225
,

Δ3(σ , σ)= −2a2b4 + 3b6 + 4a2 + 3a4b2 − 8ab3 − 6ab − 18a2b2

225

+ −6a3b − b2 + 4b4 − 2a4 − 2ab5 − 2a3b3 − 2

225
,

Δ4(σ , σ)= 6b4 − 9a2b4 − 6a4b2 + 4b6 + a2b6 − 21a2b2 + 3ab5 + 3ab3 + ab + 4a4

225

+ −9a3b5 + ab7 + 4b2 − 11a2 + b8 + 6a4b4 − 22a3b3 − 13a3b + 1

225
,

Δ5(σ , σ)= 2a2(b2 + 1)2((1 + b(b − a))2 − 3a2)

45
.

Since Δ1(σ , σ) = 2
5
Δ1(σ ) and Δ5(σ , σ) = 2

5
a2(b2 + 1)2Δ2(σ ) is clear that Δ1(σ , σ) � 0 ⇐⇒

Δ1(σ ) � 0 and Δ5(σ , σ) � 0 ⇐⇒ Δ2(σ ) � 0 and so if the duplication of σ is Newton then σ is

Newton. We need to prove that if Δi(σ ) � 0, i = 1, 2, then Δi(σ , σ) � 0, for i = 2, 3, 4. The sum of

the exponents of a and b in each term in all the expressions for the Δ’s are even, thus it is suf-

ficient to prove it for b� 0. In this semiplane Δi(σ ) � 0, i = 1, 2, in the following cases (see

Theorem 24)

b >
√

3 and a ∈
(
−∞, b − √

3
]
∪

[
b2 + 1

b − √
3
,+∞

)
;

b = √
3 and a ∈ (−∞, 0];

b ∈
[

1√
3
,
√

3

)
and a ∈

[
b2 + 1

b − √
3
, b − √

3

]
.

If we denote Δ2(a, b) = Δ2(σ , σ), then the value of Δ2(σ , σ) in the points of Δ2(σ ) = 0 is

Δ2

(
b2 + 1

b − √
3
, b

)
= 4

(
5
√

3b3 − 15b2 + 5
√

3b + 1
) (√

3b − 1
)2

225
(
b − √

3
)4 .

This expression is nonnegative for b� 0 because the cubic polynomial 5
√

3b3 − 15b2 + 5
√

3b + 1 is

strictly increasingwith only one negative root b = 3
√

5−2√
3

3
√

5
. Since the expressionΔ2(σ , σ) has the same

(positive) sign in the positive semiplane defined by Δ2(σ ) = 0, then Δ2(σ , σ) > 0. Analogously for

Δ3(σ , σ) and Δ4(σ , σ), it is sufficient to bear in mind that

Δ3

(
b2 + 1

b − √
3
, b

)
= 8(b2 + 1)2

(
5
√

3b3 − 15b2 + 5
√

3b − 1
)

225
(
b − √

3
)4
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with only one positive root Rb = 5− 3
√

50

5
√

3
< 1√

3
and

Δ4

(
b2 + 1

b − √
3
, b

)
= 4(b2 + 1)4

(√
3b − 1

)
45

(
b − √

3
)4

so Δ3(σ , σ) and Δ4(σ , σ) are also positive in the positive semiplane defined by Δ2(σ ) = 0. �

References

[1] G. Hardy, J.E. Littlehood, G. Pólya, Inequalities, Cambridge University Press, 1952.
[2] C.R. Johnson, C. Marijuán, M. Pisonero, Matrices and spectra satisfying the Newton inequalities, Linear Algebra Appl. 430

(2009) 3030–3046.
[3] I. Newton, Arithmetica universalis: sive de compositione et resolutione arithmetica liber, 1707.
[4] C.P. Niculescu, A new look at Newton’s inequalities, J. Inequal. Pure Appl. Math. 1 (2) (2000) 14, Article 17 (electronic).


