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Abstract

The nonnegative inverse eigenvalue problem (NIEP) is: given a family of complex numbers
σ = {λ1, . . . , λn}, find necessary and sufficient conditions for the existence of a nonnegative matrix A
of order n with spectrum σ . Loewy and London [R. Loewy, D. London, A note on the inverse eigenvalue
problems for nonnegative matrices, Linear and Multilinear Algebra 6 (1978) 83–90] resolved it for n = 3,
and for n = 4 when the spectrum is real. In our way of handling the NIEP, we focus our attention on the
coefficients of the characteristic polynomial of A. Thus, the NIEP that we consider is: “given k1, k2, . . . , kn

real numbers, find necessary and sufficient conditions for the existence of a nonnegative matrix A of order n
with characteristic polynomial xn + k1xn−1 + k2xn−2 + · · · + kn”. The coefficients of the characteristic
polynomial are closely related to the cyclic structure of the weighted digraph with adjacency matrix A.
We introduce a special type of digraph structure, that we shall call EBL, in which this relation is specially
simple. We give some results that show the interest of EBL structures. We completely solve the NIEP from
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the coefficients of the characteristic polynomial for n = 4. We also solve a special case of the NIEP for
n � 2p + 1 with k1 = · · · = kp−1 = 0 and p � 2.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

First we consider the nonnegative inverse eigenvalue problem (NIEP): given a family of
complex numbers σ = {λ1, . . . , λn}, find necessary and sufficient conditions for the existence
of a nonnegative matrix A of order n with spectrum σ . As Johnson [8] said “This is an intriguing
and difficult problem, the resolution to which appears to be far from known”.

Necessary conditions for σ to be the spectrum of a nonnegative matrix A of order n are:

(C1) σ is closed under the complex conjugation;
(C2) the spectral radius ρ of A is in σ ;
(C3) the moments of all the orders are nonnegative;

where the moment of order k of σ is the number

sk(σ ) :=
n∑

i=1

λk
i = tr Ak, k = 1, 2, . . . (1)

Loewy and London [12] in 1978, and Johnson [8] independently in 1979, put forward another
transcendental necessary condition for studying the NIEP:

(C4) (sk(σ ))m � nm−1skm(σ ), k, m = 1, 2, . . .

It is well known, Friedland [6], that the condition (C3) implies that the spectral radius of A is
in σ . Loewy and London [12] use the Newton identities

sm + k1sm−1 + k2sm−2 + · · · + km−1s1 + kmm = 0 m = 1, . . . , n (2)
that relate the coefficients of the characteristic polynomial

n∏
j=1

(x − λj ) = xn + k1x
n−1 + k2x

n−2 + · · · + kn (3)

with the moments sk of the eigenvalues to show that (C3) implies that σ is closed under the
complex conjugation. Consequently, the necessary conditions in the NIEP can be reduced to (C3)

and (C4). Recently, Holtz [7] gave new necessary conditions, Newton’s Inequalities:

(C5) (ci(σ ))2 � ci−1(σ )ci+1(σ ), i = 1, . . . , n − 1,
where

ci(σ ) = coefficient of degree (n − i) of
∏n

j=1(x − (ρ − λj ))(
n

i

) . (4)

Holtz proves that the conditions (C3) and (C4) and (C5) are mutually independent.



J. Torre-Mayo et al. / Linear Algebra and its Applications 426 (2007) 729–773 731

On the other hand, Suleimanova, Brauer and Perfect (1949–1955) introduced seminal geomet-
ric and algebraic techniques to deal with this problem. These techniques have provided the basis
for dozens of articles over the last 50 years that have proposed many sufficient conditions with
weak mutual implications. Most such conditions only consider the case where the spectrum is
real. Those given by Kellogg [9] in 1971 and Salzman [17] in 1972 stand out. In the last 10 years,
the necessary condition of Johnson–Loewy–London has been efficiently exploited to advance the
solution to the NIEP in very particular cases, with sufficient conditions that can be expressed
by means of relations between moments of different orders. Thus, Reams [15] in 1996 resolved
the NIEP for matrices of order 4 and zero trace and gave a sufficient condition for matrices of
order 5 and zero trace. Later, Laffey and Meehan [11] in 1999 resolved the problem for matrices
of order 5 and zero trace. Borobia [2] improved Kellogg’s condition in 1995 and Soto [18] in
2003 generalized Salzman’s sufficient condition. Rojo and Soto [16] and Borobia, Moro and Soto
[3,19] have made the most recent contributions to the NIEP.

However, these sufficient conditions seem to be far from the known necessary conditions. If
complete characterizations of this problem are to be looked for, little is known. The NIEP is trivial
for n � 2. In 1978, Loewy and London [12] resolved it for n = 3 (see our Section 4), and for
n = 4 in the particular case where the spectrum is real. The general case for n � 4, at present,
remains open.3

Other significant contributions related to the NIEP: in 1991 Boyle and Handelman [4] studied
the families of nonzero complex numbers, which are the nonzero portion of the spectrum of a
nonnegative matrix. They characterized the nonzero spectra of primitive matrices using symbolic
dynamics. A problem, which remains open, is to find the minimum number of zeros to add,
or failing that, a good lower bound. In 1997, Wuwen [20] set bounds to the minimum value
of the spectral radius of a collection of complex numbers, that is closed under the complex
conjugation, realizable as the spectrum of a nonnegative matrix; this minimum remains to be
found.

In our way of handling the NIEP, a nonnegative matrix will be seen as the adjacency matrix of a
weighted digraph. We shall not focus our attention directly on its spectrum but on the coefficients
of its characteristic polynomial. Thus, the NIEP that we consider can be described as follows:

“given real numbers k1, k2, . . . , kn, find necessary and sufficient conditions for the existence
of a nonnegative matrix of order n with characteristic polynomial xn + k1x

n−1 + k2x
n−2 +

· · · + kn”.

We shall say that such a polynomial P(x) is realizable and that the nonnegative matrix with
characteristic polynomial P(x) is a matricial realization of the polynomial. The coefficients of
the characteristic polynomial are closely related to the cyclic structure of the weighted digraph
associated to the matrix A, as established by the Coefficient Theorem (see Section 2). Our purpose
is to introduce tools that allow us to relate the information contained in the cyclic structure of the
digraph associated with A to the coefficients of its characteristic polynomial. To achieve this we
shall introduce a special type of digraph structure, that we shall call EBL, in which the desired
connections are specially simple. This relation between the cyclic structure and the coefficients
of the characteristic polynomial, which is workable thanks to the EBL digraphs, is the basis of
the results obtained that, for n = 4, completely resolve the NIEP.

3 Added in proof: It was pointed out to us by the referee that the NIEP for n = 4 has been studied by Meehan in her
Ph.D. thesis [13] with a different approach from the one in the present paper.
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The coefficients of the characteristic polynomial have been taken into consideration very little
in the context of the NIEP. Apart from its use as a proof tool already mentioned in [12], Perfect
and Mirsky [14] in 1965 characterized the polynomials of degree three that are characteristic
polynomials of doubly stochastic matrices.

The rest of this paper is organized as follows:
In Section 2, we introduce basic concepts, notations and results used in this paper.
In Section 3, we give some necessary conditions for the nonnegative matricial realization of

a polynomial of degree n. In particular, in Theorem 3, necessary and sufficient conditions are
given for the coefficients k1, k2 and k3 so that a polynomial of the form xn + k1x

n−1 + k2x
n−2 +

k3x
n−3 + · · · can be realizable.

In Section 4, we specify the solution in the cases n = 2 and n = 3.
In Section 5, we introduce the EBL digraphs and matrices. We give two general results that

show the interest of these structures and we give an explicit procedure to transform, in the cases
n = 3 and n = 4, any matricial realization into an EBL realization.

In Section 6, we solve the NIEP from the coefficients of the characteristic polynomial for the
case n = 4.

In Section 7, we solve the NIEP in the case n � 2p + 1 with k1 = · · · = kp−1 = 0 and p � 2,
which includes the case n = 5 when k1 = 0 solved by Laffey and Meehan [11].

2. Preliminaries and notations

In this paper we will use some standard basic concepts and results about square nonnegative
matrices such as reducible, irreducible, Frobenius normal form of a reducible matrix, irre-
ducible component and Frobenius Theorem about the spectral structure of an irreducible matrix
as they have been described in [1].

By a weighted digraph G, or simply digraph, we mean a triplet (V , E, w) where V is a
nonempty finite set, E ⊂ V × V and w: E → R+ is a positive real map on E. The elements in
V and E are called vertices and arcs respectively; the values of the map w are called weights.
The adjacency matrix of a weighted digraph (V , E, w) with V = {v1, . . . , vn} is the matrix
A = (aij )

n
i,j=1 where aij = w(vi, vj ) if (vi, vj ) ∈ E and aij = 0 otherwise.

A sequence of different vertices v1v2 · · · vr , r � 1, such that (vi, vi+1) ∈ E for i = 1, 2, . . . ,

r − 1 is called a path of length r − 1 joining v1 with vr . A cycle of length r or r-cycle is a
sequence of vertices v1v2 · · · vrv1 where v1v2 · · · vr is a path and (vr , v1) ∈ E. A linear digraph
is a collection of disjoint cycles. A digraph is strongly connected if every two vertices are joined
by a path.

A subdigraph of (V , E, w) is a digraph (V ′, E′, w′) with V ′ ⊂ V , E′ ⊂ E and w′ = w|E′ .
The subdigraph will be called an induced subdigraph when E′ = E ∩ (V ′ × V ′).

Coefficient Theorem for weighted digraphs: Let G be a weighted digraph, A its adjacency
matrix and PG(x) = PA(x) = |xI − A| = xn + k1x

n−1 + k2x
n−2 + · · · + kn. Then, for each

1 � i � n,

ki =
∑

L∈Li

(−1)p(L)�(L), (5)

where Li is the set of all linear subdigraphs L of G with exactly i vertices; p(L) denotes the
number of cycles of L; �(L) denotes the product of the weights of all arcs belonging to L. (See
[5]).
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Let A = (aij )
n
i,j=1 be the adjacency matrix of a weighted digraph G. For r � 1, we denote as

ci1i2...ir the weight of the r-cycle joining the vertices vi1 , vi2 , . . . , vir , that is

ci1i2...ir = ai1i2ai2i3 . . . air i1(= cir i1i2...ir−1 = cir−1ir i1i2...ir−2 = · · · = ci2i3...ir i1). (6)

When r = 1 we will put

li = aii = ci, (7)

that is the weight of the 1-cycle or loop at vertex vi . Let 1 � i1 � · · · � iq � n be a sequence
of integers. We denote as CSi1...iq the subset of Li1+···+iq whose elements are sets of q disjoint
cycles of G of lengths i1, . . . , iq ; CS from cyclic structures. Finally, let fm(l1, . . . , ln) be the
symmetric function on l1, . . . , ln, that is

fm(l1, . . . , ln) =
{ ∑

i1<...<im

li1 · · · lim if 1 � m � n,

0 if m > n.
(8)

Hence, for PG(x) = PA(x) = xn + k1x
n−1 + · · · + kn, we have

k1 = −
∑
CS1

li = −f1(l1, . . . , ln), (9)

k2 =
∑
CS11

li lj −
∑
CS2

cij = f2(l1, . . . , ln) −
∑
CS2

cij , (10)

k3 = −
∑

CS111

li lj lr +
∑
CS12

licjr −
∑
CS3

cijr

= −f3(l1, . . . , ln) +
∑
CS12

licjr −
∑
CS3

cijr . (11)

3. Necessary conditions

Proposition 1. Let P(x) = k0x
n + k1x

n−1 + · · · + kn be a polynomial with real coefficients,
n � 1 and k0 > 0. Then, ∀x > max{Re λ : P(λ) = 0}, P (j)(x) > 0, for j = 0, 1, . . . , n.

Proof. The result is clear for n = 1, 2. When n > 2, it can be proved by induction over n

writing P(x) = P1(x)P2(x), with P1(x) and P2(x) polynomials verifying the hypothesis of the
proposition and with degree lower than n. Now the Leibniz formula for the derivative gives the
result. �

Corollary 2. Let P(x) be the characteristic polynomial of a nonnegative matrix of order n with
spectral radius ρ. Then, ∀x > ρ, P (j)(x) > 0, for j = 0, 1, . . . , n.

Theorem 3. Let P(x) = xn + k1x
n−1 + k2x

n−2 + · · · + kn be the characteristic polynomial, of
degree n � 3, of a nonnegative matrix A. Then:

(a) k1 � 0; (12)

(b) k2 � n − 1

2n
k2

1; (13)
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(c) k3 �

⎧⎪⎪⎨⎪⎪⎩
n−2
n

(
k1k2 + n−1

3n

((
k2

1 − 2nk2
n−1

) 3
2 − k3

1

))
if (n−1)(n−4)

2(n−2)2 k2
1 < k2,

k1k2 − (n−1)(n−3)

3(n−2)2 k3
1 if k2 � (n−1)(n−4)

2(n−2)2 k2
1 .

(14)

Moreover, given k1, k2 and k3 verifying the above conditions there exists a nonnegative matrix of
order n whose characteristic polynomial is of the form xn + k1x

n−1 + k2x
n−2 + k3x

n−3 + Q(x),

where Q(x) = 0 if n = 3 and a polynomial of degree lower than or equal to n − 4 if n > 3.

Proof. (a) k1 = −tr(A) � 0 because A is a nonnegative matrix.
(b) Using the Coefficient Theorem and (10), for a fixed k1, the maximum value of k2 is obtained

when there are no 2-cycles and the weight of the loops is equally distributed, that is cij = 0, for
i /= j , and l1 = l2 = · · · = ln = − k1

n
. Then

k2 �
(

n

2

)(
−k1

n

)2

= n − 1

2n
k2

1 . (15)

(c) Again, using the Coefficient Theorem and the expressions (9)–(11), for fixed k1 and k2,
the maximum value of k3 is obtained when there are no 3-cycles and the weight of all 2-cycles
is focussed on 2-cycles connecting two vertices with loops of lowest weight. Without loss of
generality we can assume l1 � l2 � · · · � ln, and so we can take cij = 0 for (i, j) /= (1, 2). Let

s =
∑
i�3

li (16)

and note that

− n − 2

n
k1 � s � −k1. (17)

Then we have

k1 = −f1(l1, . . . , ln) = −(l1 + l2) − s,

k2 = f2(l1, . . . , ln) − c12, (18)

k3 = −f3(l1, . . . , ln) + c12

∑
i�3

li = −f3(l1, . . . , ln) + c12s.

From the above expressions of k1 and k2 we obtain:

l1 + l2 = −k1 − s, (19)

c12 = f2(l1, . . . , ln) − k2.

This allows us to express k3 as:

k3 = −(l1l2s + (l1 + l2)f2(l3, . . . , ln) + f3(l3, . . . , ln)) + c12s

= −(l1l2s + (−k1 − s)f2(l3, . . . , ln) + f3(l3, . . . , ln)) + (f2(l1, . . . , ln) − k2)s. (20)

Because

f2(l1, . . . , ln) = l1l2 + (l1 + l2)s + f2(l3, . . . , ln)

= l1l2 − (k1 + s)s + f2(l3, . . . , ln) (21)
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we have the following expression:

k3 = −s3 − k1s
2 − k2s + (k1 + 2s)f2(l3, . . . , ln) − f3(l3, . . . , ln). (22)

Let us now see that for s ∈
[
−n−2

n
k1, −k1

]
, see (17), the function

H [s](l3, . . . , ln) = (k1 + 2s)f2(l3, . . . , ln) − f3(l3, . . . , ln) (23)

attains its maximum on the set B = {(l3, . . . , ln)/0 � l3 � l4 � · · · � ln, l3 + l4 + · · · + ln = s}
at

l3 = l4 = · · · = ln = s

n − 2
. (24)

The maximum exists because the function H [s] is continuous and B is a compact set. Let us
assume this maximum is attained at a point (l3, . . . , ln) with li < li+1, for some i < n. Put
l̃i = l̃i+1 = (li + li+1)/2, then

H [s](l3, . . . , ln) − H [s](l3, . . . li−1, l̃i , l̃i+1, li+2, . . . , ln)

= (li li+1 − l̃i l̃i+1)(−l1 − l2 + li + li+1) < 0 (25)

which contradicts the assumed maximum.
Now, if we replace l3, l4, . . . , ln by s/(n − 2) in the expression of k3 obtained in (22) we have:

k3 = −s3 − k1s
2 − k2s + (k1 + 2s)

(
n − 2

2

)(
s

n − 2

)2

−
(

n − 2
3

)(
s

n − 2

)3

= − n(n − 1)

3!(n − 2)2
s3 − n − 1

2(n − 2)
k1s

2 − k2s

� max
− n−2

n
k1�s�−k1

{
− n(n − 1)

3!(n − 2)2
s3 − n − 1

2(n − 2)
k1s

2 − k2s

}

= max
− k1

n
�ln�− k1

n−2

{
−n(n − 1)(n − 2)

3! l3
n − (n − 1)(n − 2)

2
k1l

2
n − (n − 2)k2ln

}
. (26)

Let

kmax
3 (k1, k2) = max

− k1
n

�ln�− k1
n−2

{
−n(n − 1)(n − 2)

3! l3
n − (n − 1)(n − 2)

2
k1l

2
n − (n − 2)k2ln

}
(27)

and let l
kmax

3
n be the value of ln where kmax

3 (k1, k2) is attained. Then we have

l
kmax

3
n (k1, k2) =

⎧⎪⎨⎪⎩
− k1

n
+ 1

n

√
k2

1 − 2nk2
n−1 if (n−1)(n−4)

2(n−2)2 k2
1 < k2,

− k1
n−2 if k2 � (n−1)(n−4)

2(n−2)2 k2
1

(28)
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and

kmax
3 (k1, k2) =

⎧⎪⎪⎨⎪⎪⎩
n−2
n

(
k1k2 + n−1

3n

((
k2

1 − 2nk2
n−1

) 3
2 − k3

1

))
if (n−1)(n−4)

2(n−2)2 k2
1 < k2,

k1k2 − (n−1)(n−3)

3(n−2)2 k3
1 if k2 � (n−1)(n−4)

2(n−2)2 k2
1,

(29)

which proves condition (c).
Finally, given k1, k2 and k3 verifying (a)–(c), the nonnegative matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 1 0 · · · · · · 0
c12 l1 1 0 · · · 0

c123 0 ln
. . .

. . .
...

0 0 0
. . .

. . . 0
...

...
...

. . .
. . . 1

0 0 0 · · · 0 ln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ln = l

kmax
3

n (k1, k2),

l1 = −k1−(n−2)ln
2 ,

c12 = f2(l1, l1, ln, . . . , ln) − k2,

c123 = kmax
3 (k1, k2) − k3,

(30)

has its characteristic polynomial of the form xn + k1x
n−1 + k2x

n−2 + k3x
n−3 + Q(x). �

Let us assume that the polynomial P(x) = xn + k1x
n−1 + · · · + kjx

n−j + · · · + kn is real-
izable. A frequent objective throughout this paper will be to try to maximize the coefficient of
degree n − j as a function of the coefficients of higher degree maintaining the realizability for
a polynomial of degree n with equal k1, . . . , kj−1 as P(x). This maximum, which is attained in
the cases considered, will be denoted by kmax

j (k1, . . . , kj−1). Note that this maximum expression
depends on the degree n of the polynomial. The proof of the previous theorem clearly shows this
dependency on n: see (29) for kmax

3 (k1, k2).

Proposition 4. Let P(x) = xn + k1x
n−1 + k2x

n−2 + · · · + kn be the characteristic polynomial
of a nonnegative matrix with spectral radius ρ such that P(ρ) = P(−ρ) = 0 and |P ′(−ρ)| >

P ′(ρ). Then there exists ε0 > 0 such that P(x) + ε is not realizable for 0 < ε � ε0.

Proof. We know, from Corollary 2, that P ′(ρ) � 0. If P ′(ρ) = 0, the result is true (see Corollary
2). When P ′(ρ) > 0, in some neighbourhoods of −ρ and ρ we have |P ′(x)| > P ′(y) > 0. Now,
this combined with the Mean Value Theorem gives the result. �

4. The cases n = 2 and n = 3

Theorem 3 can be extended to the case n = 2.

Theorem 5. Let P(x) = x2 + k1x + k2. Then the following two statements are equivalent:

(i) P (x) is the characteristic polynomial of a nonnegative matrix;
(ii) the coefficients of P(x) satisfy the following conditions:

(a) k1 � 0, (31)

(b) k2 �
k2

1

4
. (32)
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Further, when (i) and (ii) hold, a matricial realization for P(x) is(
l1 1
c12 l1

)
where

⎧⎨⎩l1 = − k1
2 ,

c12 = k2
1
4 − k2.

(33)

Theorem 3 for the case n = 3 provides the following characterization:

Theorem 6. LetP(x) = x3 + k1x
2 + k2x + k3.Then the following two statements are equivalent:

(i) P (x) is the characteristic polynomial of a nonnegative matrix;
(ii) the coefficients of P(x) verify the following conditions:

(a) k1 � 0, (34)

(b) k2 �
k2

1

3
, (35)

(c) k3 � kmax
3 (k1, k2) =

{
k1k2

3 + 2
27

(
(k2

1 − 3k2)
3
2 − k3

1

)
if k2 > −k2

1,

k1k2 if k2 � −k2
1 .

(36)

Moreover, when (i) and (ii) hold, a matricial realization for P(x) is

⎛⎝ l1 1 0
c12 l1 1
c123 0 l3

⎞⎠ where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l3 = l

kmax
3

3 (k1, k2),

l1 = −k1−l3
2 ,

c12 = f2(l1, l1, l3) − k2,

c123 = kmax
3 (k1, k2) − k3.

(37)

Remark 7. Observe that the digraphs associated to the realizations given in the previous theorems
can be represented as

Remark 8. When n � 3 the graph of the polynomial function P tells us if the polynomial is
realizable or not.

The graph of P(x) = x3 + k1x
2 + k2x + k3 has an inflexion point at x = −k1/3 and

P ′(−k1/3) = k2 − k2
1/3. Suppose P(x) is realizable, then:

– Condition (a) says that the x-coordinate of the inflexion point −k1/3 is in the interval [0, +∞).
– Condition (b) says that P ′(−k1/3) = k2 − k2

1/3 � 0 (we have a horizontal tangent at the
inflexion point when k2 is maximum and the slope of this tangent decreases with the distance
of k2 to k2

1/3).
– Condition (c) says that the graph of P(x) is obtained by pulling down the graph of x3 +

k1x
2 + k2x + kmax

3 (k1, k2) via a vertical translation. Reciprocally, if the graph of a realizable
polynomial is moved up, we get a realizable polynomial until its spectral radius ρ either
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becomes a multiple root or ρ and −ρ become roots. Above these situations we will go against
Corollary 2 or Proposition 4, respectively.

Loewy and London, see [12], proved that given a family σ = {λ1, λ2, λ3} of complex numbers,
the following conditions

(L1) max
1�i�3

|λi | ∈ σ, (38)

(L2) σ̄ = σ, (39)

(L3) s1(σ ) = λ1 + λ2 + λ3 � 0, (40)

(L4) [s1(σ )]2 � 3s2(σ ), (41)

are necessary and sufficient for σ to be the spectrum of a nonnegative matrix of order 3.

Corollary 9. Let σ = {λ1, λ2, λ3} be a family of complex numbers such that σ = σ̄ and let
P(x) = (x − λ1)(x − λ2)(x − λ3) = x3 + k1x

2 + k2x + k3. Then, the sets of conditions (L1),

(L3) and (L4) (see (38), (40), (41)) and (a)–(c) (see (34)–(36)) are equivalent.

5. EBL digraphs and matrices

The matrices given in the above sections to obtain particular realizations share the characteristic
of being nonnegative lower Hessenberg matrices with ones in the supradiagonal. These matrices
and their associated weighted digraphs are an important tool which, together with the Coefficient
Theorem, allows us to obtain results about realizability.

Definition 10. Let G = (V , E, w) be a digraph with V = {v1, . . . , vn}. We shall say that G

is an EBL digraph (from the Spanish Estructura Básica Lineal, i.e., lineal basic structure) if
(vi, vj ) /∈ E, for j > i + 1, and (vi, vi+1) ∈ E with w(vi, vi+1) = 1, for i = 1, . . . , n − 1.

We shall say that a matrix is EBL if it is the adjacency matrix of an EBL digraph. We shall
say that a polynomial has an EBL realization or is EBL realizable when it is the characteristic
polynomial of an EBL matrix, or equivalently, of an EBL digraph.

EBL digraphs have a notoriously simplified structure. They are made up of a fixed path p =
v1v2 · · · vn consecutively covering all the vertices of the digraph with arcs of weight 1. The only
possible cycles vi+1vi+2 · · · vi+rvi+1 are built on the path p covering r consecutive vertices and
an arc (vi+r , vi+1) closing the cycle. The weight ci+1,...,i+r of these cycles is equal to the weight
of the closing arc which we denote by ai+r,i+1. The figure below is a graphic representation of
such EBL digraphs
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where the weights of the arcs are indicated. The possible loops are not shown but their weights
li are associated with the corresponding vertices. According to this notation the EBL adjacency
matrix of an EBL digraph is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 1 0 0 · · · 0 0

a21 l2 1 0 · · · 0 0

a31 a32 l3 1
. . .

...
...

a41 a42 a43 l4
. . . 0

...

. . .
. . .

. . .
. . .

. . .
. . . 0

an−11
. . .

. . .
. . .

. . . ln−1 1

an1 · · · · · · · · · · · · ann−1 ln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 1 0 0 · · · 0 0

c12 l2 1 0 · · · 0 0

c123 c23 l3 1
. . .

...
...

c1234 c234 c34 l4
. . . 0

...

. . .
. . .

. . .
. . .

. . .
. . . 0

c1...n−1
. . .

. . .
. . .

. . . ln−1 1

c1...n c2...n c3...n · · · · · · cn−1n ln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

Note that the weights of the existing 2-cycles in the EBL digraph occupy the first subdiagonal of
the EBL matrix, the weights of the 3-cycles the second subdiagonal, etc.

We shall now look at some results about realizability in whose proofs EBL digraphs are used.

Theorem 11. Let P(x) = xn + k1x
n−1 + · · · + kn be a polynomial with an EBL realization.

Then the polynomial xn + k̃1x
n−1 + · · · + k̃n with k̃i � ki, for i = 1, . . . , n, also has an EBL

realization.

Proof. Let A be an EBL matricial realization of P(x)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 1 0 · · · 0

a21 a22 1
. . . 0

...
...

. . .
. . . 0

...
...

. . . 1

an1 an2 · · · · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

and let G be the associated digraph with vertices {v1, . . . , vn}.
We shall prove, by induction over n, that given ε1 � 0 and an integer i with 1 � i � n, the

polynomial P(x) − ε1x
n−i is EBL realizable by a matrix of the form
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a11 1 0 · · · · · · 0
...

. . .
. . .

. . .
...

ai1 + ε1 ai2
. . .

. . .
. . .

...

ai+1,1 + ε2 ai+1,2
. . .

. . . 0
...

...
. . . 1

an1 + εn−i+1 an2 · · · · · · · · · ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(44)

where we have just modified the entries (r, 1) of A, for r = i, . . . , n, by adding εj � 0, j =
1, . . . , n − i + 1.

The result is clear for n = 1. In the general case, we shall reach a linear system of equations
in the unknowns εj , for j = 2, . . . , n − i + 1, whose solution is nonnegative.

Let Aj be the square submatrix of A formed by its last n − j + 1 rows and columns and let Ci,j

be the coefficient of xn−j+1−i of the characteristic polynomial of Aj . The Coefficient Theorem
and the particular structure of the digraph G allow us to obtain the equality

Ci,j = −ajjCi−1,j+1 − aj+1,jCi−2,j+2 − · · ·
−aj+i−2,jC1,j+i−1 − aj+i−1,j + Ci,j+1. (45)

Note that the indices i and j must verify 1 � i, j � n and i + j � n, because the last summand
Ci,j+1 of (45) includes the contribution of the i-cycle vj+1vj+2 · · · vj+ivj+1, which requires the
existence of the vertex vj+i . We extend this equality for Ci,n−i+1 by putting

Ci,n−i+2 = 0. (46)

Let us return to the matrix (44). As the incorporation of ε1 reduces the coefficient ki of
xn−i by ε1 but increases the coefficient ki+1 of xn−i−1 by ε1(ai+1,i+1 + · · · + ann), then ε2
must be

ε2 = ε1(ai+1,i+1 + · · · + ann) = −ε1C1,i+1 � 0. (47)

Similarly, having fixed ε1 and ε2, the fitting of the coefficient of xn−i−2 to the value of ki+2 means
that

ε3 = −ε2C1,i+2 − ε1C2,i+1. (48)

In general, we have

εj+1 = −εjC1,j+i − εj−1C2,j+i−1 − · · · − ε2Cj−1,i+2 − ε1Cj,i+1, 1 � j � n − i.

(49)

To show that εj+1 � 0, 1 � j � n − i, the first j equations of (49) are matricially written as
follows⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

C1,i+2 1
. . .

...

C2,i+2 C1,i+3
. . .

. . .
...

...
...

. . . 0
Cj−1,i+2 Cj−2,i+3 · · · C1,i+j 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

ε2
ε3
...
...

εj+1

⎞⎟⎟⎟⎟⎟⎟⎠ = −ε1

⎛⎜⎜⎜⎜⎜⎜⎝

C1,i+1
C2,i+1

...

...

Cj,i+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (50)
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Cramer’s rule assures that

εj+1 = −ε1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 C1,i+1

C1,i+2 1
. . .

... C2,i+1

C2,i+2 C1,i+3
. . . 0

...

...
...

. . . 1
...

Cj−1,i+2 Cj−2,i+3 · · · C1,i+j Cj,i+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (51)

Applying (45) on the last column of the matrix from (51) and using elementary properties of the
determinants we obtain

εj+1 = −ε1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 C1,i+2

C1,i+2 1
. . .

... C2,i+2

C2,i+2 C1,i+3
. . . 0

...

...
...

. . . 1
...

Cj−1,i+2 Cj−2,i+3 · · · C1,i+j Cj,i+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ε1ai+j,i+1. (52)

Observe that we have a nonnegative “residual term” ε1ai+j,i+1. In what follows we shall group
the nonnegative values of the different nonnegative residual terms that we have and we shall
denote them by “NRT ”. Note also that if i + j = n, then the entry (j, j) of the matrix from (52)
is Cj,i+2 = 0 because of (46).

To abbreviate the expressions that will appear, for a vector v ∈ Rj , we denote by Sk(v) to the
matrix of size j × j where

(0, . . . , 0, 1, C1,i+p+2, C2,i+p+2, . . . , Cj−p,i+p+2)
T (53)

is the p-column, for 1 � p � k − 1, v is the k-column,

(0, . . . , 0, 1, C1,i+q+1, C2,i+q+1, . . . , Cj−q,i+q+1)
T (54)

is the q-column, for k + 1 � q � j − 1, and

(C1,i+2, C2,i+2, . . . , Cj−1,i+2, Cj,i+2)
T (55)

is the j -column. Now we rewrite the columns, successively from the first to the penultimate, with
a similar process to the one realized from (51) to (52). Realizing this process to the columns
1, . . . , k − 1 we obtain

εj+1 = −ε1 det Sk((0, . . . , 1, C1,i+k+1, C2,i+k+1, . . . , Cj−k,i+k+1)
T) + NRT. (56)

Now, applying the equalities (45) to the entries of the k-column on the matrix from (56), we
have

εj+1 = −ε1 det Sk((0, . . . , 1, C1,i+k+2, C2,i+k+2, . . . , Cj−k,i+k+2)
T)

+ ε1 det Sk((0, . . . , 0, ai+j,i+k+1)
T) + NRT. (57)
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Note that changing over the k-column and the j -column we get

ε1 det Sk((0, . . . , 0, ai+j,i+k+1)
T)

= −ε1ai+j,i+k+1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 C1,i+2

C1,i+3 1
. . . 0 C2,i+2

C2,i+3 C1,i+4
. . .

...
...

...
...

. . . 1 Ck−1,i+2
Ck−1,i+3 Ck−2,i+4 · · · C1,i+k+1 Ck,i+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(58)

which is nonnegative by analogy with (51) and by the induction hypothesis. Hence it is included
in NRT and we can write

εj+1 = −ε1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · C1,i+2

C1,i+3 1 0
. . . C2,i+2

C2,i+3 C1,i+4
. . .

. . . C3,i+2
...

... 1
...

Cj−1,i+3 Cj−2,i+4 · · · C1,i+j+1 Cj,i+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ NRT. (59)

With respect to (51), we have increased by one the indices of the columns and we have also added
the summand NRT . Then, repeating the whole process we get to a point where i + j + 1 >

n and the last row of the corresponding matrix from (59) is zero, thus only NRT remains.
�

Theorem 12. Given k2, k3, . . . , kn real numbers, then there exists a real number k1 such that
P(x) = xn + k1x

n−1 + k2x
n−2 + · · · + kn is a realizable polynomial.

Proof. We shall see how, taking −k1 sufficiently large, it is possible to find an EBL realization
of P(x) of the type

(60)

In this EBL digraph the only cyclic structures with r vertices are CS1(r−1) and CSr . Now ai

denotes the weight of the only i-cycle (which connects the vertices v1, v2, . . . , vi). Identifying
the coefficients of P(x) with those of the characteristic polynomial of the matrix given in (60) we
have

kr = ar−1 − ar , r = 2, 3, . . . , n, (61)

k1 = −a1 − 1.
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This linear system can be rewritten as

ar = −1 − k1 − · · · − kr , r = 1, . . . , n. (62)

The result follows taking −k1 sufficiently large. �

5.1. EBL realizations for n = 3

In Section 4, we proved that any realizable polynomial of degree 2 or 3 has an EBL realization.
Let us see that for a realizable polynomial of degree 3, it is possible to find an EBL realization by
modifying a known realization.

Without loss of generality, a nonnegative matricial realization of the polynomial x3 + k1x
2 +

k2x + k3⎛⎝ l1 a12 a13
a21 l2 a23
a31 a32 l3

⎞⎠ (63)

with increasing diagonal l1 � l2 � l3 can be used as a starting point. We will now build an EBL
realization of P(x) with the same loops, so that k1 is not modified. According to the Coefficient
Theorem

k2 = f2(l1, l2, l3) −
∑
CS2

cij where cij = aij aji

(64)

k3 = −f3(l1, l2, l3) +
∑
CS12

licjq −
∑
CS3

cijq where cijr = aij ajrari .

In order to preserve k2, the sum of the weights of the 2-cycles must be preserved. As for k3, the
key is in the summand referred to CS12. To avoid loss of positivity of this summand, we focus the
weights of the 2-cycles at the entry (2, 1) of the EBL matrix, and therefore opposite the biggest
loop, thus maximizing the contribution of this summand to k3. To adjust k3 it is enough to add
the necessary weight of the 3-cycle. The EBL matrix obtained is then⎛⎝l1 1 0

d l2 1
t 0 l3

⎞⎠ where

{
d = c12 + c13 + c23,

t = c123 + c132 + c13(l3 − l2) + c23(l3 − l1).
(65)

Similar ideas to these can be used for n = 4, as we shall see below.

5.2. EBL realizations for n = 4

Proceeding as in the case n = 3, given a realizable polynomial P(x) = x4 + k1x
3 + k2x

2 +
k3x + k4 and a nonnegative matricial realization⎛⎜⎜⎝

l1 a12 a13 a14
a21 l2 a23 a24
a31 a32 l3 a34
a41 a42 a43 l4

⎞⎟⎟⎠ , (66)

with l1 � l2 � l3 � l4, we shall find an EBL realization of P(x). In accordance with the Coeffi-
cient Theorem
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k2 = f2(l1, l2, l3, l4) −
∑
CS2

cij ,

k3 = −f3(l1, l2, l3, l4) +
∑
CS12

licjq −
∑
CS3

cijq , (67)

k4 = f4(l1, l2, l3, l4) −
∑

CS112

li lj cqr +
∑
CS13

licjqr +
∑
CS22

cij cqr −
∑
CS4

cijqr .

We shall proceed with the following criteria:

1. Preserve the loop weights and the sum of the 2-cycle weights of the original realization.
2. Concentrate the 2-cycle weights in such a way that there is no loss of positivity in the summand

referred to CS12.
3. Concentrate the 2-cycle weights in such a way that the possible loss of positivity in the summand

referred to CS22 is compensated for by the disappearance of 4-cycles in the summand referred
to CS4.

In order to see how to apply the third of these criteria, let us suppose that the 2-cycle weights
cij , cjq, cqr and cri (Fig. 1) are all positive in the initial realization. Thus the summands corre-
sponding to CS22 and to CS4 will also be positive. If any of these 2-cycles are suppressed in the
concentration of the 2-cycle weights, a loss of negativity occurs in the summands referred to CS4
because of the disappearance of the 4-cycles (see Figs. 2 and 3).

The following lemma gives a lower bound for this loss of negativity.

Lemma 13. Using the previous notation

cijqr + cirqj � 2
√

cij cjqcqrcri � 2 min{cij cqr , circqj }. (68)

Proof. Given that

cirqj = ajiaqj arqair = cij cjqcqrcri

aij ajqaqrari

= cij cjqcqrcri

cijqr

(69)

it is enough to bear in mind that the map x + c/x with c > 0 attained its minimum in (0, +∞) at
the point x = √

c and that this minimum value is 2
√

c. �

This means that, on moving the 2-cycle weights, the “large” pair of 2-cycles should be kept
opposite each other so that loss of positivity produced by the cancelling of some 2-cycles will be
compensated for by the loss of negativity in the corresponding 4-cycles.

The pattern of behaviour just described in order to respect the third of the criteria set out
at the beginning of the section, leads us to give the EBL realizations separately in three cases,

Fig. 1. cij , cjq , cqr , cri .
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Fig. 2. cijqr .

Fig. 3. cirqj .

depending on what the “large” pair in the CS22 is, as can be seen in the proof of the following
result.

Theorem 14. Every realizable polynomial of degree 4 is EBL realizable.

Proof. Let P(x) = x4 + k1x
3 + k2x

2 + k3x + k4 be a polynomial with matricial realization as
(66) with increasing diagonal, l1 � l2 � l3 � l4. We consider the following cases:

First case: c12c34 = max{cij cqr}. An EBL realization is

where

d1 = c12 + c13 + c14 + c23 + c24,

d3 = c34,

t =
∑
CS3

cijq + c13(l3 − l2)︸ ︷︷ ︸
t13

+ c14(l4 − l2)︸ ︷︷ ︸
t14

+ c23(l3 − l1)︸ ︷︷ ︸
t23

+ c24(l4 − l1)︸ ︷︷ ︸
t24

, (70)

c = d1d3 −
∑
CS22

cij cqr +
∑
CS4

cijqr︸ ︷︷ ︸
[e.1]

+ t l4 − d1l3l4 − d3l1l2 −
⎛⎝∑

CS13

licjqr −
∑

CS112

li lj cqr

⎞⎠
︸ ︷︷ ︸

[e.2]

.
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It is clear that d1, d3 and t are nonnegative. The expression of t has been built by adding the
necessary weights to the 3-cycles of the original realization, in order to preserve the coefficient k3
of the polynomial P(x). Each braced summand describes the necessary weight for compensating
the increase in k3 caused by the change in position of the corresponding 2-cycles. For instance,
t14 is the weight that compensates for the increase in k3 due to the displacement of c14 from the
vertices v1 and v4 in the original realization to the vertices v1 and v2 in the EBL realization.

The expression of c represents the difference between the part of k4 generated by d1, d3 and t

and the k4 of the given polynomial. The expression [e.1] is nonnegative because:

(1) c12c34 < d1d3 by definition of d1 and d3, and
(2) c23c14 � c1234 + c1432 and c13c24 � c1243 + c1342 by the above lemma and because, in this

case, c12c34 is the largest term in CS22.

Let us now see that [e.2] is also nonnegative. Taking into account that

t l4 =
∑
CS13

licjqr +
∑
CS13

(l4 − li )cjqr + (t14 + t24)(l4 − l3)

+ t13l4 + t14l3 + t23l4 + t24l3 (71)

and that

−
∑

CS112

li lj cqr = −d1l3l4 − d3l1l2 + t13l4 + t14l3 + t23l4 + t24l3 (72)

[e.2] can be expressed as follows

[e.2] =
∑
CS13

(l4 − li )cjqr + (t14 + t24)(l4 − l3) � 0. (73)

Second case: c13c24 = max{cij cqr}. An EBL realization is

where

d1 = c13 + c14 + c23 + c34

d2 = c12

d3 = c24 (74)

t =
∑
CS3

cijq + c14(l4 − l3)︸ ︷︷ ︸
t14

+ c23(l2 − l1)︸ ︷︷ ︸
t23

+ c34(l4 − l1)︸ ︷︷ ︸
t34

c = d1d3 −
∑
CS22

cij cqr +
∑
CS4

cijqr︸ ︷︷ ︸
[e.1]

+
∑
CS13

(l4 − li )cjqr + (t14 + t34)(l4 − l2)︸ ︷︷ ︸
[e.2]

.
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Third case: c14c23 = max{cij cqr}. An EBL realization is:

where

d1 = c23 + c24 + c34

d2 = c12 + c13

d3 = c14

t =
∑
CS3

cijq + c13(l3 − l2)︸ ︷︷ ︸
t13

+ c24(l4 − l3)︸ ︷︷ ︸
t24

+ c34(l4 − l2)︸ ︷︷ ︸
t34

(75)

c = d1d3 −
∑
CS22

cij cqr +
∑
CS4

cijqr︸ ︷︷ ︸
[e.1]

+
∑
CS13

(l4 − li )cjqr + (t24 + t34)(l4 − l1)︸ ︷︷ ︸
[e.2]

. �

Remark 15. Because every realizable polynomial of degree 4 admits an EBL realization with
the entry (4, 2) zero, in what follows we shall only consider EBL realizations with this feature.

Remark 16. The 4-cycles only affect the independent term of the characteristic polynomial. So,
if we are interested in obtaining the maximum k4, given k1, k2 and k3, then we can assume EBL
realizations with the entry (4, 1) zero.

6. The case n = 4

Given a polynomial, P(x) = x4 + k1x
3 + k2x

2 + k3x + k4, Theorem 3 gives necessary con-
ditions over three of its coefficients for P(x) to be realizable:

(a) k1 � 0;
(b) k2 � kmax

2 (k1) = 3

8
k2

1; (76)

(c) k3 � kmax
3 (k1, k2) =

⎧⎪⎨⎪⎩
k1k2

2 + 1
8

((
k2

1 − 8k2
3

)3/2 − k3
1

)
if k2 > 0,

k1k2 − k3
1
4 if k2 � 0.
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Theorem 3 also says that given k1, k2 and k3 verifying (76) we can find a realizable polynomial
of the form P(x) = x4 + k1x

3 + k2x
2 + k3x + k4. This means that the shape and the position,

except vertical translations, of the graph of P(x) are known. Hence, in order to characterize the
polynomials of degree 4 realizable we need to describe kmax

4 (k1, k2, k3). Firstly, let us see that
kmax

4 (k1, k2, k3) exists.

Theorem 17. Let k1, k2 and k3 verify the necessary conditions (76). Then there exists a realizable
polynomial x4 + k1x

3 + k2x
2 + k3x + k4 with k4 = kmax

4 (k1, k2, k3).

Proof. Let us see that there exists an EBL matrix, see Theorem 14 and Remarks 15 and 16,⎛⎜⎜⎝
l1 1 0 0
d1 l2 1 0
t d2 l3 1
0 0 d3 l4

⎞⎟⎟⎠ (77)

whose characteristic polynomial has the desired k4. From the Coefficient Theorem we know

k1 = −
4∑

i=1

l1 ⇒ li � −k1, i = 1, 2, 3, 4

k2 = f2(l1, l2, l3, l4) −
3∑

i=1

di ⇒ di � 3

8
k2

1 − k2, i = 1, 2, 3

k3 = −f3(l1, l2, l3, l4) + d1(l3 + l4) + d2(l1 + l4) + d3(l1 + l2) − t (78)

⇒ t � − k3
1

16
− 2k1

(
3

8
k2

1 − k2

)
+ |k3|

which means that given k1, k2 and k3 the entries of the above EBL matrix are bounded. This assures
the result because the determinant, k4, is a continuous function of the entries of the matrix. �

Given a realizable polynomial P(x) = x4 + k1x
3 + k2x

2 + k3x + k4, its inflexion points have
x-coordinates, that we denote by xli (left inflexion) and xri (right inflexion), with values

xli(k1, k2) = −k1

4
− 1√

6

√
3

8
k2

1 −k2 and xri(k1, k2) = −k1

4
+ 1√

6

√
3

8
k2

1 − k2. (79)

We call the real number −k1/4 the centre of the polynomial P(x), that is, the midpoint of
the segment that joins the x-coordinates of the inflexion points of the polynomial. The Taylor
expansion of P(x) at its centre

P(x) =
(

x + k1

4

)4

−
(

3

8
k2

1 − k2

)(
x + k1

4

)2

+ P ′
(

−k1

4

)(
x + k1

4

)
+ P

(
−k1

4

)
(80)

shows that the position of the graph of P(x) is determined by −k1/4 and its shape by the values

kmax
2 (k1) − k2 = 3

8
k2

1 − k2 (81)
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and

P ′
(

−k1

4

)
= k3 + k1

2

(
k2

1

4
− k2

)
. (82)

The inequalities given in (76) have the following graphical implications:

– The condition k1 � 0 means that the centre of the polynomial is in [0, +∞).
– The condition k2 � kmax

2 (k1) means that P(x) has two inflexion points (equal when k2 =
kmax

2 (k1)) and that the distance between their x-coordinates depends on (81).
– The condition k3 � kmax

3 (k1, k2) means that the slope of the tangent at the centre is smaller
than a bound. When this tangent is horizontal the graph of P(x) is symmetric with respect to
the line x = −k1/4 and we shall say that P(x) is balanced.

Definition 18. We say that a realizable polynomial P(x) = x4 + k1x
3 + k2x

2 + k3x + k4 is bal-
anced or in equilibrium when P ′(−k1/4) = 0 and we denote by k

eq
3 (k1, k2) the value of the

coefficient of x of this polynomial, that is,

k
eq
3 (k1, k2) = −k1

2

(
k2

1

4
− k2

)
. (83)

The expression (83) allows us to rewrite the kmax
3 (k1, k2) given in (76) as

kmax
3 (k1, k2) =

{
k

eq
3 (k1, k2) +

(
2
3 (kmax

2 (k1) − k2)
)3/2

if k2 > 0,

2k
eq
3 (k1, k2) if k2 � 0.

(84)

Note that
(

2
3 (kmax

2 (k1) − k2)
)1/2 = xri(k1, k2) − xli(k1, k2).

Our objective is to obtain the value kmax
4 (k1, k2, k3) and it will be given as the determinant of

a particular matricial realization.
In what follows, when there is no doubt from the context, we will omit the dependency of

functions such as kmax
2 , k

eq
3 or xli from the coefficients.

Let us see some restrictions about the choice of the diagonal elements of nonnegative realiza-
tions of polynomials of degree 4 and some results related to these restrictions.

The necessary conditions given in (76) say that the loop weights li are bounded by −k1. When
k2 > 0 we have more restrictions on the choice of these weights because the positivity of k2 only
comes from CS11. Without being precise, for k2 close to kmax

2 (k1) the loop weights will be close
to being equally distributed. The next result specifies these ideas.

Lemma 19. Let P(x) = x4 + k1x
3 + k2x

2 + k3x + k4 be a realizable polynomial with k2 > 0.

Then, with the introduced notations, the loop weights li of any realization of P(x) must verify

max
1�i�4

{li} � 2xri − xli . (85)

Proof. According to the Coefficient Theorem

k2 = f2(l1, l2, l3, l4) −
∑
CS2

cij . (86)
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Let us assume l4 = max1�i�4{li}. Note that l4 � −k1/4 and that f2(l1, l2, l3) attains its maximum
when l1 = l2 = l3. Then we have

f2(l1, l2, l3, l4) = l4(l1 + l2 + l3) + f2(l1, l2, l3) � l4(−k1 − l4) + 1

3
(−k1 − l4)

2. (87)

The result follows by solving the equation k2 = l4(−k1 − l4) + 1
3 (−k1 − l4)

2 on l4:

l4 = −k1

4
+ 3√

6

√
3

8
k2

1 − k2 = 2xri − xli . � (88)

In what follows we denote the largest loop weight of any realization with fixed k1 and k2 by
lmax(k1, k2), so from the above result

lmax(k1, k2) =
{

− k1
4 + 3√

6

√
3
8k2

1 − k2 if k2 > 0,

−k1 if k2 � 0.
(89)

The value lmax(k1, k2) will be significant in the study of kmax
4 (k1, k2, k3).

Lemma 20. Let P(x) = x4 + k1x
3 + k2x

2 + k3x + k4 be a realizable polynomial with two non
real complex roots.

(1) If r is a double real root of P, then any matricial realization of P, EBL or not, has r as a
diagonal element, and therefore

r � lmax(k1, k2). (90)

(2) If the two real roots of P are larger than lmax(k1, k2), then P only admits irreducible
realizations.

Proof. The existence of two non real complex roots implies that the Frobenius normal form of
any matricial realization must have an irreducible component of size greater than or equal to 3.

(1) By the Frobenius Theorem, P can only have reducible realizations with irreducible com-
ponents of sizes 3 and 1. The component of size 1 is r and, therefore, r is a diagonal element of
any realization of P .

(2) If P has a reducible realization, then P has an irreducible component of size 1 and none
of its real roots is sufficiently small to be the diagonal element of this component. �

Theorem 21. Let k1, k2 and k3 verify the necessary conditions (76) and let P(x) = x4 + k1x
3 +

k2x
2 + k3x + kmax

4 (k1, k2, k3). If P(x) has an EBL realization with lmax(k1, k2) and P(x) > 0
for all x < lmax(k1, k2), then for every polynomial P̃ (x) = x4 + k1x

3 + k2x
2 + k̃3x +

kmax
4 (k1, k2, k̃3) with k̃3 < k3 we have

P(lmax(k1, k2)) = P̃ (lmax(k1, k2)). (91)

Proof. Let⎛⎜⎜⎝
l1 1 0 0
d1 l2 1 0
t d2 l3 1
0 0 d3 lmax

⎞⎟⎟⎠ (92)
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be an EBL realization of P(x). For each δ > 0 the nonnegative matrix⎛⎜⎜⎝
l1 1 0 0
d1 l2 1 0

t + δ d2 l3 1
0 0 d3 lmax

⎞⎟⎟⎠ (93)

has characteristic polynomial

Qδ(x) = P(x) − δx + δlmax. (94)

These polynomials verify

Qδ(l
max) = P(lmax), (95)

Qδ(x) > P (x) > 0 ∀x < lmax. (96)

Let k̃3 < k3. Because

Q
k3−k̃3

(x) = x4 + k1x
3 + k2x

2 + k̃3x + kmax
4 (k1, k2, k3) + (k3 − k̃3)l

max (97)

we have Q
k3−k̃3

(x) � P̃ (x) and Q′
k3−k̃3

(x) = P̃ ′(x).

Let us assume that Q
k3−k̃3

(x) < P̃ (x), for all x ∈ R. Let⎛⎜⎜⎝
l̃1 1 0 0
d̃1 l̃2 1 0
t̃ d̃2 l̃3 1
0 0 d̃3 l̃4

⎞⎟⎟⎠ (98)

be an EBL realization of P̃ (x) and let

tmin = min{k3 − k̃3, t̃}. (99)

Let Q∗
k3−k̃3

(x) and P̃ ∗(x) be the characteristic polynomials of the matrices⎛⎜⎜⎝
l1 1 0 0
d1 l2 1 0

t + k3 − k̃3 − tmin d2 l3 1
0 0 d3 lmax

⎞⎟⎟⎠ and

⎛⎜⎜⎝
l̃1 1 0 0
d̃1 l̃2 1 0

t̃ − tmin d̃2 l̃3 1
0 0 d̃3 l̃4

⎞⎟⎟⎠ , (100)

respectively. Note that these matrices have been obtained from the EBL matrices of Q
k3−k̃3

(x)

and P̃ (x), respectively, when reducing the 3-cycle weight for tmin. We have

Q∗
k3−k̃3

(x) = Q
k3−k̃3

(x) + tminx − tminl
max, (101)

P̃ ∗(x) = P̃ (x) + tminx − tmin l̃4 (102)

and

P̃ ∗(x) − Q∗
k3−k̃3

(x) = P̃ (x) − Q
k3−k̃3

(x) + tmin(l
max − l̃4) > 0. (103)

If tmin = k3 − k̃3, then Q∗
k3−k̃3

= P which contradicts the above inequality (103).
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If tmin < k3 − k̃3, then tmin = t̃ and hence P̃ ∗ admits the symmetric realization⎛⎜⎜⎜⎜⎜⎝
l̃1

√
d̃1 0 0√

d̃1 l̃2

√
d̃2 0

0
√

d̃2 l̃3

√
d̃3

0 0
√

d̃3 l̃4

⎞⎟⎟⎟⎟⎟⎠ (104)

which guarantees that all the roots of P̃ ∗ are real. Note that the weights of cyclic structure
corresponding to realization (100) are equal to the weights of cyclic structure corresponding to
realization (104).

Because Q∗
k3−k̃3

(x) = Q
k3−k̃3−tmin

(x), it follows from (103) and (96) that P̃ ∗(x) > 0, for all

x � lmax. Therefore P̃ ∗(x) is positive on (−∞, −k1/4] because lmax � −k1/4, and this goes
against the real character of the roots of this polynomial. Hence the assumption that Q

k3−k̃3
(x) <

P̃ (x) is false, see the line above (98). This combined with the assertion after (97) givesQ
k3−k̃3

(x) =
P̃ (x), for all x ∈ R. Finally, the result follows from (95). �

6.1. The study of kmax
4 (k1, k2, k3) in some simple cases

We will study the value kmax
4 (k1, k2, k3) when k3 = kmax

3 (k1, k2) or k2 = kmax
2 (k1) or k1 = 0.

In Section 3 it was seen that the constructed realizations, see (30), of the polynomials with
k3 = kmax

3 (k1, k2) are strongly limited: there are no 3-cycles, the weight of all 2-cycles is focussed

on 2-cycles connecting two vertices with loops of lowest weight and l3 = l4 = l
kmax

3
4 (k1, k2).

These observations and the knowledge of the existence of an EBL realization for every
realizable polynomial of degree 4 allow us to say that the polynomials corresponding to k3 =
kmax

3 (k1, k2) can only have EBL realizations of one of the two types⎛⎜⎜⎜⎝
l1 1 0 0
d1 l2 1 0

0 0 l
kmax

3
4 1

c 0 0 l
kmax

3
4

⎞⎟⎟⎟⎠ , where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l
kmax

3
4 =

{
xri if k2 > 0,

− k1
2 if k2 � 0,

l1 + l2 = −k1 − 2l
kmax

3
4 =

{
2xli if k2 > 0,

0 if k2 � 0,

d1 = f2

(
l1, l2, l

kmax
3

4 , l
kmax

3
4

)
− k2,

(105)

⎛⎜⎜⎜⎜⎝
l
kmax

3
4 1 0 0

d1 l
kmax

3
4 1 0

0 d2 l
kmax

3
4 1

c 0 d3 l
kmax

3
4

⎞⎟⎟⎟⎟⎠ , where

⎧⎨⎩l
kmax

3
4 = − k1

4 ,

d1 + d2 + d3 = 6
(
l
kmax

3
4

)2 − k2 = kmax
2 − k2,

(106)
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with c � 0, in both cases. The second type is only possible when k2 = kmax
2 (k1) or k1 = 0. Note

that every EBL realization corresponding to kmax
4 must have c = 0.

First of all we study the case k1 < 0 and k2 < kmax
2 (k1), so we have realizations of the type

(105). The EBL realization corresponding to kmax
4 (k1, k2, k

max
3 (k1, k2)) must have the weights of

the loops verifying l1 = l2. Figs. 4 and 5 show the two possible general shapes of the graph of
a realizable polynomial of degree 4 in this situation. The band between the inflexion points has
been shaded.

For k2 > 0, both inflexion points are in the semiplane x > 0 and the right local minimum has
overlapped the right inflexion point. In this case, xri is the spectral radius and is a triple root of
P(x).

For k2 � 0, the left inflexion point is in the semiplane x � 0 and the graph of P(x) is charac-
terized for being tangent to the x-axis at the local maximum (attained at −k1/2) and for having
ρ and −ρ as roots, where

ρ =
√

k2
1

4
− k2 (107)

is the spectral radius.

Fig. 4. kmax
4 (k1, k2, kmax

3 ), k2 > 0.

Fig. 5. kmax
4 (k1, k2, kmax

3 ), k2 � 0.
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Finally we study simultaneously the cases k1 = 0 and k2 = kmax
2 (k1), so we have realizations

of the type (106), because in this situation all the loop weights are equal. This means that all the
loops have minimum weight. An EBL realization for kmax

3 (k1, k2) can have the weights of the
2-cycles, d1, d2 and d3, arbitrarily distributed. The EBL realizations for k4 = kmax

4 (k1, k2, k
max
3 )

are ⎛⎜⎜⎜⎜⎝
l
kmax

3
4 1 0 0

d1 l
kmax

3
4 1 0

0 0 l
kmax

3
4 1

0 0 d1 l
kmax

3
4

⎞⎟⎟⎟⎟⎠ where

⎧⎨⎩l
kmax

3
4 = − k1

4 ,

d1 = − k1
2 .

(108)

If we want to make k3 smaller, then the corresponding EBL realization has the entry (3,1) non
zero because the 2-cycle weights are determined by k2 and any distribution of these weights keep
us in the case kmax

3 (k1, k2) because the loop weights are equally distributed. Hence, the only way
of making k3 smaller is by increasing the weight of the 3-cycles. The realization corresponding
to k4 = kmax

4 (k1, k2, k3) is⎛⎜⎜⎜⎜⎝
l
kmax

3
4 1 0 0

d1 l
kmax

3
4 1 0

t 0 l
kmax

3
4 1

0 0 d1 l
kmax

3
4

⎞⎟⎟⎟⎟⎠ where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l
kmax

3
4 = − k1

4 ,

d1 =
6

(
l
kmax
3

4

)2

−k2

2 ,

t = −4
(
l
kmax

3
4

)3 + 4d1

(
l
kmax

3
4

)
− k3.

(109)

The expression of kmax
4 in the frontier situation that we are studying is

kmax
4 (k1, k2, k3) =

⎧⎨⎩
k2

2
4 if k1 = 0,

k1
4 k3 − 3

(
k1
4

)4
if k2 = kmax

2 (k1).
(110)

Figs. 6 and 7 show graphs of polynomials with kmax
4 and several values of k3.

Note that all the polynomials drawn in Figs. 6 and 7 have the same value at the centre and that
the condition of having kmax

4 is not deduced from their graphs but from their realizations.

Fig. 6. kmax
4 (k1, kmax

2 , k3).
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Fig. 7. kmax
4 (0, k2, k3).

6.2. The study of kmax
4 (k1, k2, k3) when k2 > 0

Fig. 8 shows, for different values of k3, graphs of realizable polynomials with k4 =
kmax

4 (k1, k2, k3), k1 and k2 fixed. The thick continuous line represents the graph of a polynomial
corresponding to kmax

3 , the dotted line represents the one corresponding to k
eq
3 and the broken line

the one corresponding to

klt
3 = kmax

3 − 10(xri − xli)
3. (111)

This value klt
3 (k1, k2), lt from last tangency, is the value of k3 for which the right local minimum

is attained at lmax(k1, k2).
As we see in Fig. 8, and as we prove in the next theorem, the polynomials corresponding to

kmax
4 have their spectral radius as double root (triple when k3 = kmax

3 ) until k3 = klt
3 . For k3 > klt

3 ,
the polynomials corresponding to kmax

4 are characterized by having their smaller real root equal
to lmax.

The next theorem gives EBL realizations for realizable polynomials of degree 4 with k2 > 0
and kmax

4 .

Fig. 8. kmax
4 (k1, k2, k3), k2 > 0.
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Theorem 22. Let k1, k2 and k3 verify the necessary conditions (76) with k2 > 0. Then the follow-
ing EBL matrices have x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3) as characteristic polynomial:

(1) For klt
3 � k3 � kmax

3 (see (111) for the definition of klt
3 ) :

⎛⎜⎜⎝
l1 1 0 0
d1 l1 1 0
t 0 l3 1
0 0 0 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 = − k1
4 − 1√

6

√
kmax

2 − k2,

l3 = − k1
4 + 2−δ√

6

√
kmax

2 − k2,

l4 = − k1
4 + δ√

6

√
kmax

2 − k2,

d1 = (δ+1)(3−δ)
6 (kmax

2 − k2),

t =
√

6
9 (δ + 1)(δ − 1)2(kmax

2 − k2)
3
2 ,

(112)

where δ is the largest real root of x3 − 3x + 2k∗
3 with k∗

3 = k3−k
eq
3

kmax
3 −k

eq
3

, that is,

δ =

⎧⎪⎨⎪⎩
2 cos

(
1
3 arccos(−k∗

3)
)

if − kmax
3 + 2k

eq
3 � k3 � kmax

3 ,

3

√
−k∗

3 +
√

(k∗
3)2 − 1 + 3

√
−k∗

3 −
√

(k∗
3)2 − 1 if klt

3 � k3 � −kmax
3 + 2k

eq
3 .

(113)

Therefore kmax
4 (k1, k2, k3) = l4(l3(l

2
1 − d1) + t).

(2) For k3 � klt
3 :⎛⎜⎜⎝

l1 1 0 0
0 l1 1 0
t 0 l1 1
0 0 0 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎨⎪⎪⎩
l1 = − k1

4 − 1√
6

√
kmax

2 − k2,

l4 = lmax(k1, k2),

t = 32
3
√

6

(
3
8k2

1 − k2

)3/2 + klt
3 − k3.

(114)

Therefore kmax
4 (k1, k2, k3) = l4(l

3
1 + t).

Remark 23. If k3 = klt
3 then δ = 3 and the realization given in (112) is equal to the realization

given in (114).

Proof. (1) The matrix is nonnegative because l1 = xli > 0 when k2 > 0 and δ ∈ [1, 3]. To see
that this matrix has a characteristic polynomial with kmax

4 (k1, k2, k3) it is enough to see that l4 is
a double root. As l4 > xri we are at the right local minimum and therefore k4 = kmax

4 (k1, k2, k3),
see Corollary 2.

(2) Again, the matrix is nonnegative because l1 = xli > 0 when k2 > 0. Let Q(x) be the
characteristic polynomial of the matrix (114) for k3 = klt

3 . This polynomial verifies Q(x) > 0,
∀x ∈ (−∞, lmax), because Q has a double root where the right local minimum is attained.
Theorem 21 assures that the realizations given for k3 < klt

3 have characteristic polynomials with
kmax

4 , because at lmax they preserve the value attained by Q(x). �

6.3. The study of kmax
4 (k1, k2, k3) when k2 � 0

Fig. 9 shows, for different values of k3, graphs of realizable polynomials with kmax
4 , k2 < 0

and k1 and k2 fixed. The thick continuous line represents the graph of a polynomial corresponding
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to kmax
3 , which is characterized by having ρ and −ρ as roots, where ρ is its spectral radius.

This feature is kept until ρ becomes a double root. This situation is represented in Fig. 9 with a
dash-dotted line curve and corresponds to

ktrlm
3 (k1, k2) = k

eq
3 (k1, k2) + k2

1

4

√
k2

1

4
− 2k2, (115)

trlm from tangency at the right local minimum (see (83) for the definition of k
eq
3 ). The existence

of a double root at the spectral radius holds until the graph drawn with a broken line, which
corresponds to

k
lmk1
3 (k1, k2) = k3

1 + 2k1k2, (116)

lmk1 from local minimum attained at −k1. For smaller values of k3 the graphs of the polynomials
are characterized by having lmax = −k1, see (89), as the smallest real root.

The features described above are completely general for k2 < 0 and k
eq
3 � k3 � kmax

3 . For
k3 < k

eq
3 , depending on which region represented in Fig. 10 the pair (k1, k2) belongs to, there

Fig. 9. k4 = kmax
4 (k1, k2, k3).

Fig. 10. Regions of (k1, k2).
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are three models of behaviour. The model already commented corresponds to k2 � − 3
4k2

1, that
is, the shaded region from Fig. 10 bordering with the x-axis. If (k1, k2) belongs to either of the
other two regions, then the corresponding balanced polynomial attains its local right minimum
at a value larger than lmax. This means that the tangency cannot be attained at the right local
minimum, preserving the realizability for k3 < k

eq
3 , as it would have non real complex roots and

a real double root in ρ larger than lmax, see Lemma 20. Therefore, there is a transitory situation
for values of k3 between k

eq
3 and the one corresponding to the polynomial drawn with the broken

line on Figs. 11 and 12. For smaller k3, all the polynomials with kmax
4 meet at x = lmax, that is, at

x = −k1. The value of these polynomials at x = −k1 is 0 when (k1, k2) is in the narrow region
of Fig. 10, and it is positive when (k1, k2) is in the shaded region bordering with the y-axis of the
Fig. 10.

The pairs (k1, k2) used in Figs. 9, 11 and 12 correspond to the points represented on Fig. 10.
Note that these three points are on the parabola kmax

2 − k2 = c and so the distance between the
inflexion points is the same in the three cases.

6.3.1. From kmax
3 (k1, k2) to k

eq
3 (k1, k2)

We shall now prove that the polynomials described above for the range k
eq
3 � k3 � kmax

3
correspond to kmax

4 (k1, k2, k3).

Fig. 11. k4 = kmax
4 (k1, k2, k3), −k2

1 � k2 < − 3
4 k2

1 .

Fig. 12. k4 = kmax
4 (k1, k2, k3), k2 < −k2

1 .
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Theorem 24. Let k1, k2 and k3 verify the necessary conditions (76) with k2 � 0 and k3 �
k

eq
3 (k1, k2). Then the following EBL matrices have x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3)

as characteristic polynomial:

(1) For ktrlm
3 � k3 � kmax

3 (see (115) for the definition of ktrlm
3 ) :⎛⎜⎜⎝

0 1 0 0
d1 0 1 0
0 0 l4 1
0 0 d3 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l4 = − k1

2 ,

d1 = k3
kmax

3

(
k2

1
4 − k2

)
,

d3 =
(

1 − k3
kmax

3

)(
k2

1
4 − k2

)
.

(117)

Therefore kmax
4 (k1, k2, k3) = d1(d3 − l2

4).

(2) For k
eq
3 � k3 � ktrlm

3 :
⎛⎜⎜⎝

0 1 0 0
d1 l2 1 0
0 0 l4 1
0 0 d3 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l2 = − k1
2 − √

δ,

l4 = − k1
4 +

√
δ

2 ,

d1 = m
(√

δ + m + k1
2

)
,

d3 =
(√

δ
2 − m − k1

4

)2
,

(118)

where δ is

δ = 2(k3 − k
eq
3 )

4m + k1
(119)

and m is the x-coordinate where x4 + k1x
3 + k2x

2 + k3x attains its right local minimum,

i.e.,

m = −k1

4
+

√
6

3

√
kmax

2 − k2 cos

(
1

3
arccos

(
−3

√
3√

8

(
k3 − k

eq
3

(kmax
2 − k2)

3
2

)))
. (120)

Therefore kmax
4 (k1, k2, k3) = d1(d3 − l2

4).

Remark 25. When k3 = ktrlm
3 the two realizations given are equal.

Proof. (1) The matrix is nonnegative because k2 � 0 and k3 � k
eq
3 � 0. Its eigenvalues are

±
√

k3

kmax
3

√
k2

1

4
− k2, −k1

2
±
√√√√(1 − k3

kmax
3

)(
k2

1

4
− k2

)
. (121)

The value of k3/kmax
3 is 1 when k3 = kmax

3 and decreases with k3 until the spectral radius ρ =√
k3

kmax
3

√
k2

1
4 − k2 becomes a double root when k3 = ktrlm

3 , that is, ktrlm
3 solves√

k3

kmax
3

√
k2

1

4
− k2 = −k1

2
+
√√√√(1 − k3

kmax
3

)(
k2

1

4
− k2

)
. (122)

Then the characteristic polynomial of (117) verifies Proposition 4 and so its value at zero is kmax
4 .

(2) Let us see that the matrix is nonnegative. Note that δ decreases when k3 decreases (the
x-coordinate where the right local minimum is attained grows when the derivate decreases).
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Thus, the maximum value of δ corresponds to ktrlm
3 and the corresponding value of the right

local minimum is 1
4

(
−k1 +

√
k2

1 − k2

)
. Using this expression it can be seen that −k2

1/4 is the

maximum value of δ and so l2 � 0. Finally, d1 � 0 because m > xri > −k1/2. Now the result
follows because the matrix (118) has m as double eigenvalue. �

6.3.2. The case k3 < k
eq
3 (k1, k2) with − 3

4k2
1 � k2 � 0

Let meq(k1, k2) be the x-coordinate where the right local minimum of the balanced polynomial
x4 + k1x

3 + k2x
2 + k

eq
3 x + kmax

4 (k1, k2, k
eq
3 ) is attained, that is,

meq(k1, k2) = −k1

4
+ 1√

2

√
kmax

2 − k2. (123)

The condition − 3
4k2

1 � k2 assures that meq � −k1. This allows kmax
4 to be attained with tangency

at the right local minimum for some values of k3 smaller than k
eq
3 . Exactly, for all k3 corresponding

to a right local minimum at an x-coordinate smaller than or equal to −k1. It can be seen that klmk1
3 ,

see (116), is the smallest k3 verifying this. When k3 < k
lmk1
3 the corresponding polynomial with

kmax
4 cannot attain tangency at the right local minimum because the existence of non real complex

roots implies reducibility and then the local minimum cannot be attained at l4.

Theorem 26. Let k1, k2 and k3 verify the necessary conditions (76) with − 3
4k2

1 � k2 � 0 and k3 �
k

eq
3 (k1, k2). Then the following EBL matrices have x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3)

as characteristic polynomial:

(1) For k
lmk1
3 � k3 � k

eq
3 (see (116) for the definition of k

lmk1
3 ) :⎛⎜⎜⎝

l1 1 0 0
d1 l1 1 0
t 0 l1 1
0 0 0 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l1 = − k1+m

3 ,

l4 = m,

d1 = 1
3 (k2

1 − k1m − 3k2 − 2m2),

t = − (k1+4m)
27 (2k2

1 − 11k1m − 9k2 − 22m2),

(124)

and m is the x-coordinate where x4 + k1x
3 + k2x

2 + k3x attains its right local minimum,

i.e.,

m = −k1

4
+

√
6

3

√
kmax

2 − k2 cos

(
1

3
arccos

(
−3

√
3√

8

(
k3 − k

eq
3

(kmax
2 − k2)

3
2

)))
. (125)

Therefore kmax
4 (k1, k2, k3) = l4(t + l3

1 − l1d1).

(2) For k3 � k
lmk1
3 :⎛⎜⎜⎝

0 1 0 0
d1 0 1 0
t 0 0 1
0 0 0 l4

⎞⎟⎟⎠ where

⎧⎪⎨⎪⎩
l4 = −k1,

d1 = −k2,

t = k1k2 − k3.

(126)

Therefore kmax
4 (k1, k2, k3) = t l4.

Remark 27. When k3 = k
lmk1
3 the two realizations given are equal.
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Proof. (1) The matrix (124) has m as double eigenvalue. Let us see that this matrix is nonnegative.
The diagonal elements are nonnegative because m ∈ [meq, −k1] for the range of k3 considered.
The element d1 is a polynomial of degree 2 in m with roots

− k1

4
±
√

3

2

√
kmax

2 − k2, (127)

and the nonnegative character of d1 follows from

− k1

4
−
√

3

2

√
kmax

2 − k2 � meq � −k1 � −k1

4
+
√

3

2

√
kmax

2 − k2. (128)

Finally, let us see that t � 0. Since k1 + 4m > 0, the result follows if 2k2
1 − 11k1m − 9k2 −

22m2 � 0, but the roots of this polynomial in m are

− k1

4
± 3√

22

√
kmax

2 − k2 (129)

and the values of m for the range of k3 considered are greater than the greatest of these roots
because

m � meq > −k1

4
+ 3√

22

√
kmax

2 − k2. (130)

(2) The nonnegative character of the matrix is a consequence of k3 � k
lmk1
3 � k1k2, see (116).

When k3 = k
lmk1
3 the result follows because the graph of the characteristic polynomial of the

matrix is tangent to the x-axis at the unique real root. For other values of k3 the result follows
from Theorem 21. Note that for these polynomials P(l4) = P(−k1) = 0. �

6.3.3. The case k3 < k
eq
3 (k1, k2) with k2 < − 3

4k2
1

The condition k2 < − 3
4k2

1 assures that meq > −k1. This means that no k3 < k
eq
3 has a corre-

sponding kmax
4 with tangency at the right local minimum, because this implies non real complex

roots, reducible realization and a value for l4 greater than −k1.
We shall now obtain necessary conditions on the EBL realization patterns with kmax

4 .

Lemma 28. Let k1, k2 and k3 verify the necessary conditions (76) with k2 < − 3
4k2

1 and k3 <

k
eq
3 (k1, k2).ThenP(x) = x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3)has non real complex roots.

Proof. Let us consider the characteristic polynomials of the following matrices:⎛⎜⎜⎝
0 1 0 0
d1 l4 1 0
t 0 0 1
0 0 d1 l4

⎞⎟⎟⎠ where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l4 = − k1

2 ,

d1 = 1
2

(
k2

1
4 − k2

)
,

t = k
eq
3 − k3.

(131)

When k3 = k
eq
3 this polynomial corresponds to kmax

4 (whose graph is drawn with a dotted line in
Fig. 13). For k3 < k

eq
3 all the polynomials meet the one considered for k3 = k

eq
3 at x = −k1/2, see

Fig. 13, and this is the only meeting point because the graphs of the derivatives of these polynomials
are parallel. This assures that, for k3 < k

eq
3 , these polynomials have non real complex roots, and

the same is true for any polynomial with equal k1, k2 and k3 and greater independent term. �
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Fig. 13. Graphs of the characteristic polynomials of (131).

Theorem 29. Let k1, k2 and k3 verify the necessary conditions (76) with k2 < − 3
4k2

1 and k3 <

k
eq
3 (k1, k2). Let P(x) = x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3).

(1) If P has a reducible realization, then:
(1.1) k3 � k

eq
3 (k1, k2) + 1

2k1

(
3
4k2

1 + k2

)2
,

(1.2) P (−k1) = 0 and kmax
4 (k1, k2, k3) = k1(k3 − k1k2).

(2) If P does not admit a reducible realization, then P(−k1) > 0.

Proof. (1.1) Let us consider the characteristic polynomial of the matrix (131) for k3 = k
eq
3 +

1
2k1

(
3
4k2

1 + k2

)2
. This polynomial, whose graph is drawn with a dashpointed line in Fig. 13, has

−k1 as the lowest real root. For values of k3 greater than this (and smaller than k
eq
3 ) the two real

roots of the characteristic polynomial of the matrix (131) are greater than −k1, and the same
happens for the polynomials corresponding to kmax

4 . Lemma 20 assures that the only possible
realizations are irreducible.

(1.2) If P admits a reducible realization, then P has a real root lower than or equal to −k1
(allowing this root to be the greatest diagonal element, l4). Then, the best option among the
reducible ones (the one with the largest k4) is the one with a root at −k1. A polynomial with k1,
k2 and k3 verifying the conditions of the theorem and with a root at −k1 has k1(k3 − k1k2) as
independent term, and it is realizable by the nonnegative matrix⎛⎜⎜⎝

0 1 0 0
d1 0 1 0
t 0 0 1
0 0 0 l4

⎞⎟⎟⎠ where

⎧⎪⎨⎪⎩
l4 = −k1,

d1 = −k2,

t = k1k2 − k3.

(132)

(2) The polynomial x4 + k1x
3 + k2x

2 + k3x + k1(k3 − k1k2), realized by (132), guarantees
that P(−k1) � 0. The result follows from (1.2). �

The previous result finishes our study of the reducible realizations corresponding to kmax
4 .

Therefore, in what follows we concentrate our attention on describing the irreducible ones, where
we know the maximum k4 is attained, at least for values of k3 close to k

eq
3 .
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Theorem 30. Let k1, k2 and k3 verify the necessary conditions (76) with k2 < − 3
4k2

1, k3 <

k
eq
3 (k1, k2) and let P(x) = x4 + k1x

3 + k2x
2 + k3x + kmax

4 (k1, k2, k3) be a polynomial that does
not admit a reducible realization. Then every EBL realization of P(x)⎛⎜⎜⎝

l1 1 0 0
d1 l2 1 0
t d2 l3 1
0 0 d3 l4

⎞⎟⎟⎠ (133)

must verify:

(1) t > 0 and d3 > 0,

(2) l4 > −k1/2,

(3) d2 = 0,

(4) d1 − d3 = (l4 − l1)(l4 − l2),

(5) l3 = 0,

(6) l1 can be taken as zero,

(7) l4 � min

{√
k2

1−3k2−k1

3 , −k1

}
.

Therefore

kmax
4 (k1, k2, k3) = max

− k1
2 <l4�min

{√
k2
1−3k2−k1

3 ,−k1

} kir
4 (l4, k1, k2, k3), (134)

where

kir
4 (l4, k1, k2, k3) = 5l4

4

4
+ 2k1l

3
4 + l2

4

(
k2

1 + k2

2

)
+ l4(k1k2 − k3) + k2

2

4
, (135)

ir from irreducible realization.

Proof. (1) Irreducible matricial realizations are equivalent to strongly connected digraphs, and
for the EBL digraphs considered this implies d1d2d3 /= 0 or td3 /= 0.

In both cases d3 > 0. Now t > 0, otherwise P would have a symmetric realization, see (104),
and it goes against the fact that P has non real complex roots (see Lemma 28).

(2) Assume l4 � −k1/2 and let Q(x) be the characteristic polynomial of a matrix like (131)
and Q′(x) = P ′(x) (i.e., the coefficients of degrees 3, 2 and 1 of P(x) and Q(x) are equal). Let
us consider the minimum weight of the 3-cycles of the EBL realizations of Q(x) and P(x), that
is,

tmin = min{keq
3 − k3, t}. (136)
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Now let Q0(x) and P0(x) be the characteristic polynomials obtained from the realizations of
Q(x) and P(x) respectively on deminishing the entry (3, 1) by tmin, that is

Q0(x) = Q(x) + tminx − tmin

(
−k1

2

)
,

(137)

P0(x) = P(x) + tminx − tminl4.

Subtracting these equalities we get

P0(x) − Q0(x) = P(x) − Q(x) + tmin

(
−k1

2
− l4

)
� 0. (138)

If tmin = k
eq
3 − k3, then the realization that we have for Q0 has no 3-cycles, i.e., it is balanced. As

the graph of P0 is above the graph of Q0, and P0 is realizable, it should coincide with the graph
of Q0. This means that P − Q = 0, which is impossible because P does not admit a reducible
realization and Q does.

If tmin < k
eq
3 − k3, then tmin = t and the realization of P0 has no 3-cycles. It thus admits

symmetric realization, i.e., it has four real roots. This is impossible because its graph is above the
graph of Q0, and P0 has a realization of the form (131) with the entry (3, 1) positive and so P0
has non real complex roots.

(3) Assume d2 > 0. Consider the nonnegative matrix, for a sufficiently small ε > 0,⎛⎜⎜⎝
l1 1 0 0

d1 + ε l2 1 0
t + ε(l3 − l1) d2 − ε l3 1

0 0 d3 l4

⎞⎟⎟⎠ (139)

whose characteristic polynomial is Pε(x) = x4 + k1x
3 + k2x

2 + k3x + kmax
4 + εd3. We get a

contradiction because Pε(0) > kmax
4 .

(4) Firstly, let us see that d1 � d3. Otherwise, the nonnegative matrix⎛⎜⎜⎝
l1 1 0 0
d3 l2 1 0

t + (d3 − d1)(l3 + l4 − l1 − l2) 0 l3 1
0 0 d3 l4

⎞⎟⎟⎠ (140)

has a characteristic polynomial, x4 + k1x
3 + k2x

2 + k3x + kmax
4 + (d3 − d1)(l4 − l1)(l4 − l2),

with an independent term larger than kmax
4 .

As d1 � d3 > 0 we can consider the following digraphs

whose characteristic polynomials have the same derivative and the difference between their
independent terms is
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ε2 + ε((d3 − d1) + (l4 − l1)(l4 − l2)). (141)

The characteristic polynomial of the left digraph is P(x) and then the above value is nonnegative
for ε in a neighbourhood of 0 if and only if

(d3 − d1) + (l4 − l1)(l4 − l2) = 0. (142)

(5) Assume l3 > 0. Let Q(x) be the characteristic polynomial of the nonnegative matrix, for
a sufficiently small ε > 0,⎛⎜⎜⎝

l1 1 0 0
d3 + (l4 − l1)(l4 − l2) − ε(ε + l2 − l3) l2 + ε 1 0
t + ε(ε + l1 + l2 − l3 − l4)(ε − l3 + l4) 0 l3 − ε 1

0 0 d3 l4

⎞⎟⎟⎠ . (143)

It can be seen that, for a sufficiently small ε > 0, Q(x) − P(x) = −d3ε(ε + l1 + l2 − l3 − l4) >

0 which contradicts P(0) = kmax
4 .

(6) l1 can be taken as zero because the following matrices have P(x) as characteristic polyno-
mial: ⎛⎜⎜⎝

l1 1 0 0
d3 + (l4 − l1)(l4 − l2) l2 1 0

t 0 l3 1
0 0 d3 l4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 0 0

d3 + l4(l4 − (l1 + l2)) l2 + l1 1 0
t 0 l3 1
0 0 d3 l4

⎞⎟⎟⎠ . (144)

(7) From the matrix realization of P(x)⎛⎜⎜⎝
0 1 0 0

d3 + l4(l4 − l2) l2 1 0
t 0 0 1
0 0 d3 l4

⎞⎟⎟⎠ (145)

we obtain the following relations

l2 = −k1 − l4, (146)

d3 = −3

2
l2
4 − k1l4 − k2

2
.

When l4 ∈ (− k1
2 , −k1], we have d3 � 0 if and only if

l4 �

√
k2

1 − 3k2 − k1

3
. (147)

This restriction is only relevant when

√
k2

1−3k2−k1

3 < −k1, i.e., when −k2
1 < k2. Otherwise (146)

is verified for all l4 ∈ (−k1
2 , −k1].
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Finally, as a consequence of all the conditions proved, the matrix⎛⎜⎜⎜⎜⎝
0 1 0 0

l24−k2
2 −k1 − l4 1 0

k
eq
3 − k3 + 2

(
k1
4 + l4

) (
k1
2 + l4

)2
0 0 1

0 0 − 3
2 l2

4 − k1l4 − k2
2 l4

⎞⎟⎟⎟⎟⎠ (148)

is a realization of P which shows (134). �

Remark 31. Note that

max

− k1
2 <l4�min

{√
k2
1−3k2−k1

3 ,−k1

} kir
4 (l4, k1, k2, k3)

= max

− k1
2 �l4�min

{√
k2
1−3k2−k1

3 ,−k1

} kir
4 (l4, k1, k2, k3), (149)

because ∂
∂l4

kir
4

(
− k1

2 , k1, k2, k3

)
> 0.

Remark 32. When P admits a reducible realization, we know that kmax
4 (k1, k2, k3) = k1(k3 −

k1k2), so we can assure that

kmax
4 (k1, k2, k3) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩k1(k3 − k1k2), max

− k1
2 �l4�min

{√
k2
1−3k2−k1

3 ,−k1

} kir
4 (l4, k1, k2, k3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(150)

To complete the study of kmax
4 we will distinguish the two situations −k2

1 < k2 < − 3
4k2

1 and
k2 � −k2

1.

Theorem 33. Let k1, k2 and k3 verify the necessary conditions (76) with −k2
1 < k2 < − 3

4k2
1 and

k3 < k
eq
3 (k1, k2). Then

kmax
4 (k1, k2, k3) =

{
kir

4 (lm4 (k1, k2, k3), k1, k2, k3) if k∗
3 < k3,

−k1(k1k2 − k3) if k3 � k∗
3 ,

(151)

where lm4 (k1, k2, k3) is the x-coordinate where kir
4 (l4, k1, k2, k3) attains its local maximum as a

function of l4, that is,

lm4 (k1, k2, k3)

= −2k1

5
+ 2

5
√

3

√
2k2

1 − 5k2 sin

(
1

3
arcsin

(
3
√

3(−4k3
1 + 15k1k2 − 25k3)

2(2k2
1 − 5k2)3/2

))
(152)

and k∗
3 is the greatest value of k3 that verifies the equation

kir
4 (lm4 (k1, k2, k3), k1, k2, k3) = k1(k3 − k1k2). (153)
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Proof. When −k2
1 < k2 < − 3

4k2
1 we have l4 �

√
k2

1−3k2−k1

3 < −k1, so the expression for kmax
4

given in (150) is

kmax
4 (k1, k2, k3) = max

⎧⎪⎨⎪⎩k1(k3 − k1k2), max

− k1
2 �l4�

√
k2
1−3k2−k1

3

kir
4 (l4, k1, k2, k3)

⎫⎪⎬⎪⎭ . (154)

The function kir
4 (l4, k1, k2, k3), see (135), is a polynomial of degree 4 in l4 and cannot attain the

maximum that appears in (154) at l4 = −k1/2 (see the Remark 31). Then

max

− k1
2 �l4�min

{√
k2
1−3k2−k1

3 ,−k1

} kir
4 (l4, k1, k2, k3)

= max

⎧⎨⎩kir
4 (lm4 , k1, k2, k3), k

ir
4

⎛⎝
√

k2
1 − 3k2 − k1

3
, k1, k2, k3

⎞⎠⎫⎬⎭ . (155)

But if the maximum is attained at the extreme righthand side of the interval, the matrix (148) will
have d3 = 0, that is, it would be reducible and the value of kmax

4 will then be k1(k3 − k1k2). Then

kmax
4 (k1, k2, k3) = max{k1(k3 − k1k2), k

ir
4 (lm4 , k1, k2, k3)}. (156)

An analysis of the behaviour of kir
4 as a function of l4, for ever decreasing values of k3, shows

that the extreme absolute of this function in the interval under study is finally attained at the

extreme right side of the interval (at l4 =
√

k2
1−3k2−k1

3 ) since, for a small enough k3, the function
kir

4 ends by being an increasing function of l4 (the local maximum disappears). As the value of kir
4

at the right extreme of the interval is smaller than the one corresponding to a reducible realization,
the existence of a k∗

3 verifying (153) is assured. The Theorem 21 now guarantees that if kmax
4 has

been attained for a value of k3 with a realization as (132), for smaller values of k3, the root at lmax

will be maintained, that is, the kmax
4 will still correspond to a realization of type (132). �

Theorem 34. Let k1, k2 and k3 verify the necessary conditions (76) with k2 � −k2
1 and k3 <

k
eq
3 (k1, k2). Let

kcc
3 = −

√
6

225
(−k2

1 − 5k2)
3
2 − k1

25
(7k2

1 − 10k2), (157)

cc from common cut. Then

kmax
4 (k1, k2, k3) =

{
kir

4 (lm4 (k1, k2, k3), k1, k2, k3) if kcc
3 < k3,

kir
4 (−k1, k1, k2, k3) if k3 � kcc

3 ,
(158)

where lm4 (k1, k2, k3) is the x-coordinate where kir
4 (l4, k1, k2, k3) attains its local maximum as a

function of l4, see (152) for its expression.

Proof. When k2 � −k2
1, the expression of kmax

4 given in (150) is

kmax
4 (k1, k2, k3) = max

{
k1(k3 − k1k2), max

− k1
2 �l4�−k1

kir
4 (l4, k1, k2, k3)

}
. (159)



768 J. Torre-Mayo et al. / Linear Algebra and its Applications 426 (2007) 729–773

Because

kir
4 (−k1, k1, k2, k3) − k1(k3 − k1k2) = (k2

1 + k2)
2

4
� 0 (160)

then

kmax
4 (k1, k2, k3) = max

− k1
2 �l4�−k1

kir
4 (l4, k1, k2, k3). (161)

The same argument that was used in the proof of the previous theorem gives that kmax
4 is attained

at lm4 (k1, k2, k3) for k3 close to k
eq
3 . Decreasing k3 there is a moment when

kir
4 (lm4 , k1, k2, k3) = kir

4 (−k1, k1, k2, k3), (162)

that is, the local maximum is attained at −k1. Applying Theorem 21, for smaller values of k3, we

obtain that the polynomials with kmax
4 meet at the point (−k1,

(k2
1+k2)

2

4 ). This corresponds to an
irreducible realization with l4 = −k1. �

Example 35. If k1 = −1, k2 = −7/5 and k3 � kmax
3 = 33/20, then the polynomial x4 − x3 −

7
5x2 + k3x + kmax

4 is always realizable by Theorem 17. Note that k2 = −7/5 < −k2
1 = −1, so if

k3 < k
eq
3 = 33/40 we are under the assumptions of Theorem 34, which gives the value of kmax

4
and the matrix (148) gives an EBL realization for the polynomial. Let consider three particular
values of k3:

• k3 = 1 − 3
√

3
25 ∈ (kcc

3 , k
eq
3 ) =

(
17
25 , 33

40

)
. The polynomial

P(x) = x4 − x3 − 7

5
x2 +

(
1 − 3

√
3

25

)
x + 229

500

−18 cos2
(

π
18

)
125

+ 36 cos4
(

π
18

)
125

+ 6
√

3

125
+ 18 sin

(
π
18

)
125

is realized by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

51
50 + 4

√
3 sin

(
π
18

)
−6 cos2

(
π
18

)
25

3−2
√

3 sin
(

π
18

)
5 1 0

6
√

3−11
50 + 46

√
3 sin

(
π
18

)
+6 cos2

(
π
18

)(
1−8

√
3 sin

(
π
18

))
125 0 0 1

0 0
7+4

(
9 cos2

(
π
18

)
−√

3 sin
(

π
18

))
50

2+2
√

3 sin
(

π
18

)
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For this value of k3 the maximum of kir
4 , as function of its first variable, is attained at lm4 =

2
5 + 2

5

√
3 sin( π

18 ) < −k1 = 1, see (152).
• k3 = kcc

3 = 17
25 . The polynomial Q(x) = x4 − x3 − 7

5x2 + 17
25x + 19

25 is realized by⎛⎜⎜⎜⎝
0 1 0 0
6
5 0 1 0

13
25 0 0 1

0 0 1
5 1

⎞⎟⎟⎟⎠ .

• k3 = 12
25 < kcc

3 = 17
25 . The polynomial R(x) = x4 − x3 − 7

5x2 + 12
25x + 24

25 is realized by
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P(x)
Q(x)
R(x)

Fig. 14. Graphs of the polynomials from Example 35.

⎛⎜⎜⎜⎝
0 1 0 0
6
5 0 1 0

18
25 0 0 1
0 0 1

5 1

⎞⎟⎟⎟⎠ .

For this value of k3, as well as for the previous one k3 = kcc
3 , the maximum of kir

4 , as function
of its first variable, is attained at l4 = −k1 = 1. Therefore, the realizations given by (148) are
only different in the element (3, 1) and the polynomials Q(x) and R(x) have the same value
at −k1, which is represented by a point on Fig. 14.

Remark 36. Note that, as a result of the EBL realizations obtained for kmax
4 , it can be said that

any realizable polynomial of degree 4, x4 + k1x
3 + k2x

2 + k3x + k4, is realizable by an EBL
matrix of the type⎛⎜⎜⎝

l1 1 0 0
d1 l2 1 0
t 0 l3 1
c 0 d3 l4

⎞⎟⎟⎠ , (163)

for this, it is sufficient to take the realization given in this paper corresponding to kmax
4 (k1, k2, k3)

(all having d2 = 0) and to put the corresponding c to go from the value of kmax
4 to the value of k4,

i.e., c = kmax
4 − k4.

7. The case n ��� 2p + 1 when k1 = · · ·= kp−1 = 0, p ��� 2

The techniques developed in this paper and the Newton identities, allow us to extend the
already known result of obtaining necessary and sufficient conditions for a family of five complex
numbers to be the spectrum of a nonnegative matrix of size 5 and trace 0. This problem was solved
by Laffey and Meehan [11] in 1999 with tools and ideas completely different from ours.
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First we shall prove an auxiliary result. In what follows we denote the largest integer lower
than or equal to the real number x by [x].

Lemma 37 (Equitable separation of cycles). If xn + kpxn−p + · · · + k2pxn−2p + · · · + kn, kp /=
0, is the characteristic polynomial of a weighted digraph G, then

k2p � 1

2

⎛⎝1 − 1[
n
p

]
⎞⎠ k2

p. (164)

Moreover, this inequality is optimum.

Proof. Observe that G has no cycle of length less than p. Firstly, let us see that the maximum
value of k2p is obtained when all the p-cycles of G are disjoint. Assume vr is a vertex of G that is
in more than one p-cycle and let {ỹi}ti=1 be the set of the p-cycles of G. Let Ji = {j : ỹi ∩ ỹj = ∅}
and let di = ∑

j∈Ji
�(ỹj ), for 1 � i � t , where if the index set Ji of some summatory is empty

we will interpret it to be 0. Without loss of generality, we can assume that ỹ1, . . . , ỹtr are all the
p-cycles of G in which vr is present. Using the Coefficient Theorem we have

k2p �
tr∑

i=1

�(ỹi)di + RG, (165)

where the summand RG groups the contribution of the pairs of disjoint p-cycles which do not
contain the vertex vr . We can assume d1 = max1�i�tr di . Let H be the weighted digraph obtained
from G by deleting the arcs of the form (∗, vr ) of each p-cycle ỹi , i = 2, . . . , tr , and changing
the weight w of the arc (∗, vr ) of the p-cycle ỹ1 to

w

�(ỹ1)

tr∑
i=1

�(ỹi). (166)

This digraph H has the same total weight of p-cycles as G, because the p-cycles that do not
contain vr have not been modified and the only p-cycle of H where vr is present, ỹ1, has weight∑tr

i=1 �(ỹi). Therefore

k2p � d1

tr∑
i=1

�(ỹi) + RG. (167)

The iteration of this process allows us to assume that for a maximum k2p the p-cycles of G are
disjoint and so we have

k2p �
∑

1�i<j�t

�(ỹi)�(ỹj ). (168)

Secondly, the maximum k2p is attained when there exist at least two disjoint p-cycles and the

weight of the p-cycles is equally distributed, i.e., �(ỹi) = −kp

t
, i = 1, . . . , t . This is because if

�(ỹi) < �(ỹj ) then the substitution of both weights for their mean will increase the value of k2p

preserving the value of kp.
Finally, observe that

k2p �
k2
p

t2

(
t

2

)
= 1

2

(
1 − 1

t

)
k2
p (169)
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and then k2p is maximum when t is maximum, which corresponds to t =
[

n
p

]
, i.e., when the

number of disjoint p-cycles is maximum. Only in this situation is the equality in (164) reached,
which justifies its optimality. �

Remark 38. We can use the Newton identities (2) to express the inequality (164) in terms of the
moments of the spectrum of a digraph G. It is enough to consider the cases m = p and m = 2p

to obtain

p

[
n

p

]
s2p � s2

p, if s1 = · · · = sp−1 = 0, for 1 � p � n

2
. (170)

On the one hand, these expressions are a restricted refinement of the necessary condition of
Johnson–Loewy–London (sk)

m � nm−1skm, for k, m = 1, 2, . . .. On the other hand, when p = 2
and n is odd we have (n − 1)s4 � s2

2 , so (170) is an extension of the necessary condition given
by Laffey and Meehan [10] in 1998.

Theorem 39. Let p and n be integers, such that 2 � p � n � 2p + 1. Let P(x) = xn +
kpxn−p + · · · + kn−1x + kn. Then the following statements are equivalent:

(i) P (x) is realizable;
(ii) the coefficients of P(x) verify:

(a) kp, . . . , k2p−1 � 0;
(b) k2p � k2

p

4 ;

(c) k2p+1 �

⎧⎨⎩
kpkp+1 if k2p � 0,

kp+1

(
kp

2 −
√

k2
p

4 − k2p

)
if k2p > 0.

Moreover, when (i) and (ii) hold, P (x) is EBL realizable.

Proof. (i) implies (ii). Let G be a weighted digraph with characteristic polynomial P(x). The
Coefficient Theorem guarantees the condition (a), because of the absence of cycles of length lower
than p. The condition (b) is deduced from the previous lemma. For the condition (c), in general,
if {ỹi}ti=1 and {w̃j }rj=1 are the sets of cycles of lengths p and p + 1 respectively, we have

k2p+1 �
∑

ỹi∩w̃j =∅
�(ỹi)�(w̃j ) �

(
t∑

i=1

�(ỹi)

)⎛⎝ r∑
j=1

�(w̃j )

⎞⎠ = (−kp)(−kp+1). (171)

When k2p > 0, there exists m0 � − kp

2 such that

k2p = m0(−kp − m0). (172)

This situation corresponds to a digraph with two disjoint p-cycles with weights m0 and (−kp −
m0) and without 2p-cycles. This is the optimum situation because, if there are p-cycles with
weights larger than m0 then, with the following notations: m = max1�i�t �(ỹi) = �(ỹim), for
some 1 � im � t , J = {j : ỹim ∩ ỹj = ∅}, Q = {j /= im : ỹim ∩ ỹj /= ∅} and Qi = {j : i < j �
t : ỹi ∩ ỹj = ∅} for each i ∈ Q, we have
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k2p � m
∑
i∈J

�(ỹi) +
∑
i∈Q

�(ỹi)
∑
j∈Qi

�(ỹj )

� m
∑
i∈J

�(ỹi) +
∑
i∈Q

�(ỹi)m = m(−kp − m)

< m0(−kp − m0) = k2p, (173)

where if the index set of some summatory is empty we will interpret it to be 0.
The maximum k2p+1 is obtained with the absence of (2p + 1)-cycles and with a single (p + 1)-

cycle disjoint with the p-cycle of weight m0. Thus k2p+1 � m0(−kp+1) with the largest m0
verifying (172), i.e.,

m0 = −kp

2
+
√

k2
p

4
− k2p. (174)

(ii) implies (i).P(x) is EBL realizable by the matrix (aij )
n
i,j=1 whereai,i+1 = 1, i = 1, . . . , n −

1 and otherwise aij = 0, except for the following entries:

– If n < 2p: ai1 = −ki , i = p, . . . , n.
– If n = 2p and k2p � 0: ai1 = −ki , i = p, . . . , n.

– If n=2p and k2p > 0: ap1 =− kp

2 −
√

k2
p

4 − k2p; ai1 =−ki , i = p + 1, . . . , n − 1; an,p+1 =
− kp

2 +
√

k2
p

4 − k2p.
– If n = 2p + 1 and k2p � 0: ai1 = −ki , i = p + 1, . . . , 2p; a2p+1,1 = kpkp+1 − k2p+1;

a2p+1,p+2 = −kp.

– If n = 2p + 1 and k2p > 0: ap1 = − kp

2 −
√

k2
p

4 − k2p; ai1 = −ki , i = p + 1, . . . , 2p − 1;
a2p+1,1 = kp+1

(
kp

2 −
√

k2
p

4 − k2p

)
− k2p+1; a2p+1,p+2 = − kp

2 +
√

k2
p

4 − k2p. �
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