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Received 8 December 2006; accepted 31 May 2007
Available online 16 June 2007

Submitted by R. Loewy

Abstract

The real nonnegative inverse eigenvalue problem (RNIEP) is the problem of determining necessary and
sufficient conditions for a list of real numbers � to be the spectrum of an entrywise nonnegative matrix.
A number of sufficient conditions for the existence of such a matrix are known. In this paper, in order to
construct a map of sufficient conditions, we compare these conditions and establish inclusion relations or
independency relations between them.
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1. Introduction

The nonnegative inverse eigenvalue problem is the problem of characterizing all possible
spectra � = {λ1, . . . , λn} of entrywise nonnegative matrices. This problem remains unsolved.
Important advances towards a solution for an arbitrary n have been obtained by Loewy and
London [8], Reams [14] and Laffey and Meehan [10,6].
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When � is a list of real numbers we have the real nonnegative inverse eigenvalue problem
(hereafter RNIEP). This problem is only solved for n � 4 by Loewy and London [8]. A number of
sufficient conditions have been obtained for the existence of a nonnegative matrix with prescribed
real spectrum �. For a long time it was thought that the RNIEP was equivalent to the problem
of characterizing the lists of real numbers which are the spectrum of nonnegative symmetric
matrices. Johnson, Laffey and Loewy [4] in 1996 proved that both problems are different.

The first known sufficient conditions for the RNIEP were established for stochastic matrices
[21,11,12,2]. As is well known, the real stochastic inverse eigenvalue problem is equivalent to
the RNIEP and Kellogg [5] in 1971 gives the first condition for nonnegative matrices. Other
conditions for the RNIEP in chronological order are in [15,3,20,1,22,16,19]. Only a few results
are known about the relations between them. Our aim in this paper is to discuss those relations and
to construct a map, which shows the inclusion relations and the independency relations between
these sufficient conditions for the RNIEP.

Some of the sufficient conditions considered in this paper also hold for collections of complex
numbers, see [22,7].

The paper is organized as follows: Section 2 contains the list of all sufficient conditions that
we shall consider, in chronological order. Section 3 is devoted to establishing inclusion relations
or independency relations between the distinct conditions.

2. Sufficient conditions for the RNIEP

In this paper we understand by a list a collection � = {λ1, . . . , λn} of real numbers with
possible repetitions. By a partition of a list � we mean a family of sublists of � whose disjoint
union is �. As is commonly accepted, we understand that a summatory is equal to zero when the
index set of the summatory is empty.

We will say that a list � is realizable if it is the spectrum of an entrywise nonnegative matrix.
The RNIEP has an obvious solution when only nonnegative real numbers are considered, so

the interest of the problem is when there is at least one negative number in the list.
An entrywise nonnegative matrix A = (aij )

n
i,j=1 is said to have constant row sums if all its

rows sum up to the same constant, say λ, i.e.
n∑

j=1

aij = λ, i = 1, . . . , n.

The set of all entrywise nonnegative matrices with constant row sums equal to λ is denoted by
CSλ.

In what follows we list most of the sufficient conditions for the RNIEP in chronological order.
The first, and one of the most important results in this area was announced by Suleı̌manova [21]
in 1949 and proved by Perfect [11] in 1953.

Theorem 2.1 (Suleı̌manova [21], 1949). Let � = {λ0, λ1, . . . , λn} satisfy

λ0 � |λ| for λ ∈ � and λ0 +
∑
λi<0

λi � 0, (1)

then � is realizable in CSλ0 .

We point out that this theorem has been extended to collections of complex numbers. In fact,
Laffey and Šmigoc characterized when a collection of complex numbers {ρ, λ2, . . . , λn}, closed
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under complex conjugation, where ρ > 0 and Re(λj ) � 0, for j = 2, . . . , n, is realizable (see [7,
Theorem 3]).

The next result is a generalization of a condition given by Suleı̌manova [21, Theorem 3] and
proved by Perfect [11, Theorem 3].

Theorem 2.2 (Suleı̌manova-Perfect [21,11], 1949–1953). Let � = {λ0, λ01, . . . , λ0t0 , λ1, λ11,

. . . , λ1t1 , . . . , λr , λr1, . . . , λrtr } satisfy

λ0 � |λ| for λ ∈ � and λj +
∑

λji<0

λji � 0 for j = 0, 1, . . . , r, (2)

then � is realizable in CSλ0 .

Definition 2.1. A set K of conditions is said to be a realizability criterion if any list of numbers
� satisfying the conditions in K is realizable. In this case, we shall say that � is K realizable.

Definition 2.2. A list of numbers � is said to be piecewise K realizable if it can be partitioned
as �1 ∪ · · · ∪ �t in such a way that �i is K realizable for i = 1, . . . , t .

In this paperK, from the previous definitions, will be the surname of an author(s). For example,
a list verifying Theorem 2.1 will be said to be Suleı̌manova realizable and if it verifies Theorem 2.2
it will be said to be Suleı̌manova-Perfect realizable and, in this case, also piecewise Suleı̌manova
realizable.

Theorem 2.3 (Perfect 1 [11], 1953). Let

� = {λ0, λ1, λ11, . . . , λ1t1 , . . . , λr , λr1, . . . , λrtr , δ},
where

λ0 � |λ| for λ ∈ �,
∑
λ∈�

λ � 0, δ � 0,

λj � 0 and λji � 0 for j = 1, . . . , r and i = 1, . . . , tj .

If

λj + δ � 0 and λj +
tj∑

i=1

λji � 0 for j = 1, . . . , r, (3)

then � is realizable in CSλ0 .

Theorem 2.4 (Perfect 2 [12], 1955). Let {λ0, λ1, . . . , λr} be realizable in CSλ0 by a matrix
with diagonal elements ω0, ω1, . . . , ωr and let � = {λ0, λ1, . . . , λr , λr+1, . . . , λn} with −λ0 �
λi � 0 for i = r + 1, . . . , n. If there exists a partition {λ01, . . . , λ0t0} ∪ {λ11, . . . , λ1t1} ∪ · · · ∪
{λr1, . . . , λrtr } (some or all of the lists may be empty) of {λr+1, . . . , λn} such that

ωi +
ti∑

j=1

λij � 0 for i = 0, 1, . . . , r (4)

then � is realizable in CSλ0 .
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Although Perfect gives the previous theorem for stochastic matrices, the normal form of a
stochastic matrix allows us to give the theorem for the nonnegative case. Note that originally the
wi’s are diagonal elements of a stochastic matrix. When in the previous theorem the elements of
the list {λ0, λ1, . . . , λr} are all nonnegative there always exists a realization of this list in CSλ0 .
We will call this condition Perfect 2+, i.e. Theorem 2.4 when λi � 0 for i = 0, 1, . . . , r (see [12,
Theorem 3]).

All the previous conditions have proofs which are constructive, in the sense that they allow us
to construct a realizing matrix.

In order to make use of Theorem 2.4, Perfect [12] gives sufficient conditions under which
λ0, λ1, . . . , λr and ω0, ω1, . . . , ωr are the eigenvalues and the diagonal elements, respectively, of
a matrix in CSλ0 . For r = 1 and r = 2 she gives necessary and sufficient conditions.

Lemma 2.1. Let � = {λ1, . . . , λr}, with λ1 � |λ| for λ ∈ �, realizable. The real numbers
ω1, . . . , ωr are the diagonal elements of a matrix in CSλ1 with spectrum � if

(i) 0 � ωi � λ1, for i = 1, . . . , r;
(ii) ω1 + · · · + ωr = λ1 + · · · + λr ;

(iii) ωi � λi and ω1 � λi, for i = 2, . . . , r.

Fiedler gives other sufficient conditions for the wi’s.

Lemma 2.2 (Fiedler [3], 1974). Let λ1 � · · · � λn, with λ1 � |λn|, and ω1 � · · · � ωn � 0
satisfy

(i)
∑s

i=1 λi �
∑s

i=1 ωi for s = 1, . . . , n − 1;
(ii)

∑n
i=1 λi = ∑n

i=1 ωi;
(iii) λi � ωi−1 for i = 2, . . . , n − 1.

Then there exists an n × n symmetric nonnegative matrix with eigenvalues λ1, . . . , λn and diag-
onal entries ω1, . . . , ωn.

Theorem 2.5 (Ciarlet [2], 1968). Let � = {λ0, λ1, . . . , λn} satisfy

|λj | � λ0

n
, j = 1, . . . , n, (5)

then � is realizable.

Theorem 2.6 (Kellogg [5], 1971). Let � = {λ0, λ1, . . . , λn} with λ0 � |λ| for λ ∈ � and λi �
λi+1 for i = 0, . . . , n − 1. Let M be the greatest index j (0 � j � n) for which λj � 0 and
K = {i ∈ {1, . . . , �n/2�}/λi � 0, λi + λn+1−i < 0}. If

λ0 +
∑

i∈K,i<k

(λi + λn+1−i ) + λn+1−k � 0 for all k ∈ K, (6)

and

λ0 +
∑
i∈K

(λi + λn+1−i ) +
n−M∑

j=M+1

λj � 0, (7)

then � is realizable.
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Theorem 2.7 (Salzmann [15], 1972). Let � = {λ0, λ1, . . . , λn} with λi � λi+1 for i = 0, . . . ,

n − 1. If∑
0�j�n

λj � 0, (8)

and

λi + λn−i

2
� 1

n + 1

∑
0�j�n

λj , i = 1, . . . , �n/2�, (9)

then � is realizable by a diagonalizable nonnegative matrix.

Theorem 2.8 (Fiedler [3], 1974). Let � = {λ0, λ1, . . . , λn} with λi � λi+1 for i = 0, . . . , n − 1.

If

λ0 + λn +
∑
λ∈�

λ � 1

2

∑
1�i�n−1

|λi + λn−i |, (10)

then � is realizable by a symmetric nonnegative matrix.

Soules in 1983 gives a constructive sufficient condition for symmetric realization. The inequal-
ities that appear in this condition are obtained by imposing the diagonal elements of the matrix
P diag(λ1, . . . , λn)P

t to be nonnegative, where P is an orthogonal matrix with a particular sign
pattern (see [20, Lemma 2.1 and Lemma 2.2]).

Theorem 2.9 (Borobia [1], 1995). Let � = {λ0, λ1, . . . , λn} with λi � λi+1 for i = 0, . . . , n − 1
and let M be the greatest index j (0 � j � n) for which λj � 0. If there exists a partition
J1 ∪ . . . ∪ Jt of {λM+1, . . . , λn} such that

λ0 � λ1 � · · · � λM >
∑
λ∈J1

λ � · · · �
∑
λ∈Jt

λ (11)

satisfies the Kellogg condition, then � is realizable.

Theorem 2.10 (Wuwen [22], 1997). Let � = {λ1, . . . , λn} be a realizable list with λ1 � |λ| for
λ ∈ � and let εi be real numbers for i = 2, . . . , n. If ε1 = ∑n

i=2 |εi |, then the list

{λ1 + ε1, λ2 + ε2, . . . , λn + εn}
is realizable.

We point out that Theorem 2.10 is a corollary of a result of Wuwen [22, Theorem 3.1] which
holds for collections of complex numbers.

Theorem 2.11 (Soto 1 [16], 2003). Let � = {λ1, . . . , λn} with λi � λi+1 for i = 1, . . . , n − 1.

Let Sk = λk + λn−k+1, k = 2, . . . , �n/2� with Sn+1
2

= min{λn+1
2

, 0} for n odd. If

λ1 � −λn −
∑
Sk<0

Sk, (12)

then � is realizable in CSλ1 .
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In the context of Theorem 2.11 we define

T (�) = λ1 + λn +
∑
Sk<0

Sk.

In this way, (12) is equivalent to T (�) � 0. Observe that, if the list � is Soto 1 realizable then
the new list⎧⎨⎩λ′

1 = −λn −
∑
Sk<0

Sk, λ2, . . . , λn

⎫⎬⎭ ,

ordered decreasingly, is also Soto 1 realizable (if λ′
1 < λ2 the new inequality (12) is

λ2 � −λn −
∑
Sk<0

Sk

for the same Sk < 0).

Theorem 2.12 (Soto 2 [16], 2003). Let � be a list that admits a partition

{λ11, . . . , λ1t1} ∪ . . . ∪ {λr1, . . . , λrtr }
with λ11 � |λ| for λ ∈ �, λij � λi,j+1 and λi1 � 0 for i = 1, . . . , r and j = 1, . . . , ti . For each
list {λi1, . . . , λiti } of the partition we define Si and Ti as in Theorem 2.11, i.e.

Sij = λij + λi,ti−j+1 for j = 2, . . . , �ti/2�
Si,(ti+1)/2 = min{λi,(ti+1)/2, 0} if ti is odd for i = 1, . . . , r

Ti = λi1 + λiti +
∑
Sij <0

Sij for i = 1, . . . , r.

Let

L = max

⎧⎨⎩−λ1t1 −
∑

S1j <0

S1j , max
2�i�r

{λi1}
⎫⎬⎭ . (13)

If

λ11 � L −
∑

Ti<0,2�i�r

Ti, (14)

then � is realizable in CSλ11 .

Theorem 2.13 (Soto–Rojo [19], 2006). Let � be a list that admits a partition

{λ11, . . . , λ1t1} ∪ . . . ∪ {λr1, . . . , λrtr }
with λ11 � |λ| for λ ∈ �, λij � λi,j+1 and λi1 � 0 for i = 1, . . . , r and j = 1, . . . , ti . Let
ω1, . . . , ωr be nonnegative numbers such that there exists an r × r nonnegative matrix B ∈ CSλ11

with eigenvalues λ11, λ21, . . . , λr1 and diagonal entries ω1, . . . , ωr . If the lists {ωi, λi2, . . . , λiti }
with ωi � λi2, for i = 1, . . . , r, are realizable, then � is realizable in CSλ11 .

The sufficient conditions of Salzmann, Soto 1, Soto 2 and Soto–Rojo have constructive proofs,
which allow us to compute an explicit realizing matrix.
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3. Inclusion relations

In this section we compare the realizability criteria for the RNIEP. In what follows, we will
understand by Fiedler the sufficient condition for the RNIEP given at Theorem 2.8.

Theorem 3.1

1. Ciarlet implies Suleı̌manova and the inclusion is strict.
2. Ciarlet, Suleı̌manova and Suleı̌manova-Perfect are independent of Salzmann.

3. Suleı̌manova implies Fiedler and the inclusion is strict.
4. Suleı̌manova-Perfect is independent of Fiedler.

Proof. 1. Let � = {λ0, λ1, . . . , λn} verify the Ciarlet condition: |λj | � λ0
n

for j = 1, . . . , n. Then
λ0 � n|λj | � |λj | for j = 1, . . . , n and

λ0 +
∑
λj <0

λj � λ0 +
∑
λj <0

−λ0

n
� 0,

so � verifies the Suleı̌manova condition. � = {2, 0, −2} shows the inclusion is strict.
2. The list {2, 1, −1} verifies Ciarlet and Suleı̌manova but not Salzmann and {3, 1, −2, −2}

verifies Salzmann but not the Ciarlet nor Suleı̌manova-Perfect conditions.
3. Let � = {λ0, λ1, . . . , λn} verify the Suleı̌manova condition. We can assume λ0 � λ1 �

· · · � λn. We will prove the result for n even and λn/2 < 0 because for λn/2 � 0 and n odd the
proofs are similar. For this situation we have

2(λ0 + λn) +
n−1∑
j=1

λj − 1

2

n−1∑
j=1

|λj + λn−j |

= 2(λ0 + λn) +
n
2 −1∑
j=1

(
λj + λn−j − |λj + λn−j |

) + λn
2

− |λn
2
|

= 2(λ0 + λn) + 2

n
2 −1∑
j=1

λj +λn−j <0

(λj + λn−j ) + 2λn
2

� 0

where the last inequality is verified because of the Suleı̌manova condition. The list {1, 1, −1, −1}
shows the inclusion is strict.

4. The list {3, 2, −1, −1, −3}verifies Suleı̌manova-Perfect but not Fiedler and {4, 2, 1, −3, −3}
verifies Fiedler but not Suleı̌manova-Perfect. �

Fiedler proves in [3] that his condition includes the Salzmann condition. Moreover, since
Suleı̌manova-Perfect is a piecewise Suleı̌manova condition and Suleı̌manova implies Fiedler,
then Suleı̌manova-Perfect implies the piecewise Fiedler condition. As a conclusion, we observe
that the piecewise Fiedler realizability criterion contains all realizability criteria in Theorem
3.1.

Theorem 3.2. Soto 1 is equivalent to Fiedler.
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Proof. Let � = {λ1, . . . , λn}, Sk and Sn+1
2

be as in Soto 1. If � verifies Fiedler then

λ1 + λn +
n∑

k=1

λk � 1

2

n−1∑
k=2

|λk + λn−k+1|.

This inequality can be written as

2(λ1 + λn) +
n−1∑
k=2

λk �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n/2∑
k=2

|λk + λn−k+1| for n even,

�n/2�∑
k=2

|λk + λn−k+1| +
∣∣∣λn+1

2

∣∣∣ for n odd

and in both cases it is equivalent to

2(λ1 + λn) � −2
∑
Sk<0

Sk

which is Soto 1. �

The Soto result is constructive while the Fiedler result is not.
Fiedler proves in [3] that his condition implies the Kellogg condition and that the inclusion is

strict. Fiedler also proves that the Kellogg condition guarantees symmetric realization. It is well
known that Kellogg implies Borobia.

Theorem 3.3

1. Suleı̌manova-Perfect and Kellogg are independent.
2. Suleı̌manova-Perfect implies Borobia and the inclusion is strict.

Proof. 1. The list {3, 1, −2, −2} verifies Kellogg and not Suleı̌manova-Perfect. The list {3, 3,

−1, −1, −2, −2} verifies Suleı̌manova-Perfect and not Kellogg.
2. Let � = {λ0, λ01, . . . , λ0t0 , λ1, λ11, . . . , λ1t1 , . . . , λr , λr1, . . . , λrtr } verify Suleı̌manova-

Perfect: λ0 � |λ| for λ ∈ � and λj + ∑
λji<0 λji � 0 for j = 0, 1, . . . , r . We can assume λ0 �

λ1 � · · · � λr . We can also assume that for λij � 0 we have λr � λij : if there exist indexes
0 � i � r and 1 � j � ti with λij > λr we can exchange them because

λij +
∑

λrk<0

λrk > λr +
∑

λrk<0

λrk � 0.

Let λr+1 � · · · � λM be the ordered list {λ ∈ �/λ � 0, λ /= λi i = 0, 1, . . . , r}.
If � has no negative elements the result is clear; otherwise, we can assume {λij < 0, j =
1, . . . , ti} /= ∅ for 0 � i � r . Let us define μi = ∑

λij <0 λij for i = 0, 1, . . . , r . We can also
assume that μr � · · · � μ1 � μ0: if there exist indexes i < j with μi > μj we can exchange
them because

μi > μj 	⇒ λj + μi > λj + μj � 0,

λi � λj 	⇒ λi + μj � λj + μj � 0.

We shall now prove that

�̂ = {λ0 � · · · � λr � λr+1 � · · · � λM > μr = λM+1 � · · · � μ0 = λM+r+1}
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verifies Kellogg. Let K = {i ∈ {1, . . . , r + 1}/λi + μi−1 < 0} = {i1 < · · · < iq}. Condition (6)
is verified because, for all p � q, we have

λ0 +
p−1∑
j=1

(λij + μij −1) + μip−1 = (λ0 + μi1−1) +
p−2∑
j=1

(λij + μij+1−1) + (λip−1 + μip−1)

� (λ0 + μ0) +
p−1∑
j=1

(λij + μij ) � 0.

For condition (7) we observe that
∑r+1

j=M+1 λj = μr if M = r and
∑r+1

j=M+1 λj = 0 in other
cases. If r + 1 /∈ K , then

λ0 +
q∑

j=1

(λij + μij −1) +
r+1∑

j=M+1

λj

� λ0 +
q∑

j=1

(λij + μij −1) + μr

= (λ0 + μi1−1) +
q−1∑
j=1

(λij + μij+1−1) + (λiq + μr)

� (λ0 + μ0) +
q−1∑
j=1

(λij + μij ) + (λr + μr) � 0.

If r + 1 ∈ K , then the former inequalities hold replacing μr by 0.
The previous example {3, 1, −2, −2} shows the inclusion is strict. �

Theorem 3.4

1. Ciarlet, Suleı̌manova, Suleı̌manova-Perfect, Salzmann, Soto 1 and Kellogg are independent
of Perfect 1.

2. Perfect 1 with all the lists of nonpositive numbers, {λi1, . . . , λiti }, with one element implies
Kellogg.

3. If � = {λ0, λ1, λ11, . . . , λ1t1 , . . . , λr , λr1, . . . , λrtr , δ} verifies Perfect 1 then �̃ = {λ0, λ1,∑t1
j=1 λ1j , . . . , λr ,

∑tr
j=1 λrj , δ} too.

4. Perfect 1 implies Borobia and the inclusion is strict.

Proof. 1. The list {5, 4, 3, −2, −2, −2, −2, −4} verifies Perfect 1 but not any of the other condi-
tions. The list {3, 1, −1} verifies Ciarlet (so Suleı̌manova, Suleı̌manova-Perfect, Soto 1 (Fiedler)
and Kellogg too) and Salzmann but not Perfect 1.

2. Let � = {λ0, λ1, λ11, . . . , λr , λr1, δ} verify Perfect 1: λ0 � |λ| for λ ∈ �,
∑

λ∈� λ � 0,
λj � 0 and λj1 � 0 for j = 1, . . . , r and δ � 0, λj + δ � 0 and λj + λj1 � 0 for j = 1, . . . , r .
We can assume λ0 � λ1 � · · · � λr . We can also assume that δ = min{δ, λj1, j = 1, . . . , r}: if
there exists an index i with δ > λi1 we can exchange them because

λj + λi1 < λj + δ � 0 j = 1, . . . , r and λi + δ � 0.
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We can also assume that λr1 � · · · � λ11: if there exists an index i < j with λi1 > λj1 we can
exchange them because

λj1 < λi1 	⇒ λi + λj1 < λi + λi1 � 0,

λi � λj 	⇒ λj + λi1 � λi + λi1 � 0.

Now let us see that the list

λ0 � λ1 � · · · � λr � λr1 = λr+1 � · · · � λ11 = λ2r � δ = λ2r+1

satisfies Kellogg. Let

K =
{
i ∈

{
1, . . . ,

⌊
2r + 1

2

⌋} /
λi � 0, λi + λ2r+2−i < 0

}
⊆ {1, . . . , r}

and

M = max{i/λi � 0} =
{
r if λr1 < 0
r + s, s � 1 if λr+s = 0 and λr+s+1 < 0.

Note that if i ∈ {1, . . . , r} then⎧⎨⎩
λi + λ2r+2−i < 0 and i ∈ K

or
λi + λ2r+2−i = 0 and i /∈ K,

so for k ∈ K we have

λ0 +
∑
i∈K
i<k

(λi + λ2r+2−i ) + λ2r+2−k

= λ0 +
k−1∑
i=1

(λi + λ2r+2−i ) + λ2r+2−k

= λ0 + δ +
k−1∑
i=1

(λi + λi1)

� λ0 + δ +
k−1∑
i=1

(λi + λi1) +
r∑

i=k

(λi + λi1) =
∑
λ∈�

λ � 0

which proves (6). Now let us see that (7) holds:

λ0 +
∑
i∈K

(λi + λ2r+2−i ) +
2r+1−M∑
j=M+1

λj

= λ0 +
r∑

i=1

(λi + λ2r+2−i ) +
2r+1−M∑
j=M+1

λj =
∑
λ∈�

λ � 0.

3. It is enough to prove λ0 + ∑ti
j=1 λij � 0 for i = 1, . . . , r:

λ0 +
ti∑

j=1

λij � λ0 +
ti∑

j=1

λij + λi + δ +
r∑

k=1
k /=i

⎛⎝λk +
tk∑

j=1

λkj

⎞⎠ =
∑
λ∈�

λ � 0.
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The inequality is given by the Perfect 1 conditions applied to �: λi + δ � 0 and λk +∑tk
j=1 λkj � 0.
4. The inclusion is clear from Claims 2 and 3 of this theorem and because Kellogg implies

Borobia. The list {3, 3, −1, −1, −2, −2} verifies Borobia but not Perfect 1. �

Radwan [13] in 1996 proved that the Borobia condition guarantees symmetric realization.
As a conclusion from the comparison of the previous realizability criteria, we observe that the

Borobia realizability criterion contains all of them. The next diagram describes this conclusion

Theorem 3.5

1. Piecewise Soto 1 implies Soto 2 and the inclusion is strict.
2. Suleı̌manova-Perfect implies Soto 2 and the inclusion is strict.
3. Perfect 1 implies Soto 2 and the inclusion is strict.
4. Kellogg and Borobia are independent of Soto 2.

Proof. 1. The inclusion is clear. The list {8, 3, −5, −5} ∪ {6, 3, −5, −5} shows it is strict.
2. We know that Suleı̌manova implies Fiedler (Soto 1), Theorem 3.1 3., so Suleı̌manova-Perfect

implies piecewise Soto 1 and also, because of the previous result, Soto 2. The list {3, 1, −2, −2}
shows the inclusion is strict.

3. Let

� = {λ0, λ1, λ11, . . . , λ1t1 , . . . , λr , λr1, . . . , λrtr , δ}
verify Perfect 1: λ0 � |λ| for λ ∈ �,

∑
λ∈� λ � 0, δ � 0, λj � 0 and λji � 0 for j = 1, . . . , r and

i = 1, . . . , tj , λj + δ � 0 and λj + ∑tj
i=1 λji � 0 for j = 1, . . . , r . Let us see that the partition

of �

� = {λ0, δ} ∪ {λ1, λ11, . . . , λ1t1} ∪ . . . ∪ {λr, λr1, . . . , λrtr }
verifies Soto 2. Using the notation of this criterion, Theorem 2.12, we have Tj = λj + ∑tj

i=1 λji �
0 for j = 1, . . . , r and L = −δ. Finally

λ0 − L +
∑

Tj <0,1�j�r

Tj = λ0 + δ +
r∑

j=1

Tj =
∑
λ∈�

λ � 0,

proves the result.
4. The list {3, 3, 1, 1, −2, −2, −2, −2} verifies Soto 2, with the partition {3, 1, −2, −2} ∪

{3, 1, −2, −2}, but not Kellogg nor Borobia. The list {9, 7, 4, −3, −3, −6, −8} verifies Kellogg
but not Soto 2. �

Remark 3.1. In [18] it was shown that the Kellogg and Borobia conditions imply, in a “certain
sense”, the Soto 2 condition. In [17] it was shown that the Soto 2 condition guarantees symmetric
realization.
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Lemma 3.1. Let � = {λ0, λ1, . . . , λr , λr+1, . . . , λn} verify Perfect 2 (respectively Perfect 2+)

and let q ∈ {r + 1, . . . , n}. If λq = ∑
1�j�p μj with μj � 0, then

{λ0, λ1, . . . , λr , λr+1, . . . , λq−1, μ1, . . . , μp, λq+1, . . . , λn}
also verifies Perfect 2 (respectively Perfect 2+).

Proof. The result is clear because by replacing λq by μ1, . . . , μp does not change the existence
of the matrix in CSλ0 , with eigenvalues λ0, λ1, . . . , λr and diagonal elements ω0, ω1, . . . , ωr ,
nor the realizability of the new list. �

Perfect [12] proved that Perfect 2+ includes Suleı̌manova-Perfect and Perfect 1.

Theorem 3.6. Borobia implies Perfect 2+ and the inclusion is strict.

Proof. From Lemma 3.1 it is enough to prove the result for � = {λ0, . . . , λn} verifying Kellogg:
λ0 � · · · � λn, λ0 � |λn|, K = {i ∈ {1, . . . , �n/2�}/λi � 0, λi + λn+1−i < 0}, M = max{j ∈
{0, . . . , n}/λj � 0} and the conditions

K1 : λ0 +
∑

i∈K,i<k

(λi + λn+1−i ) + λn+1−k � 0 for all k ∈ K,

K2 : λ0 +
∑
i∈K

(λi + λn+1−i ) +
n−M∑

j=M+1

λj � 0.

Let us see that {λM+1, . . . , λn} can be partitioned as {λ01, . . . , λ0t0} ∪ {λ11, . . . , λ1t1} ∪ · · · ∪
{λM1, . . . , λMtM } in such a way that there exists a list W = {ω0, . . . , ωM} formed by the diagonal
elements of a realization of {λ0, . . . , λM} such that

ωi +
ti∑

j=1

λij � 0 for i = 0, 1, . . . , M. (15)

Let us consider the partition

{λM+1, . . . , λn−M}, {λn}, {λn−1}, . . . , {λn−M+1}
and the list

W =
{

λ0 +
∑
i∈K

(λi + λn+1−i ), max{λi, −λn+1−i}, i = 1, . . . , M

}
.

It is clear that the lists of the partition and the elements of W can be coupled (in fact, in the order
they are written) to verify (15).

Let us see that W can be the list of diagonal elements of a realization of {λ0, . . . , λM} showing
that they verify the sufficient conditions due to Perfect, Lemma 2.1, or to Fiedler, Lemma 2.2.
Condition (ii) in both lemmas is the same and is satisfied:∑

ω∈W

ω = λ0 +
∑
i∈K

(λi + λn+1−i ) +
M∑
i=1

max{λi, −λn+1−i}

= λ0 +
∑
i∈K

(λi + λn+1−i ) +
∑
i /∈K

λi −
∑
i∈K

λn+1−i =
M∑

i=0

λi.

Conditions (i) and (iii) in both lemmas are different and depend on the indexing of W or the order
of its elements.
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We have the following cases:

(a) λ0 + ∑
i∈K(λi + λn+1−i ) � λ1. It can be seen that by indexing W as

ω0 = λ0 +
∑
i∈K

(λi + λn+1−i ), ωi = max{λi, −λn+1−i} for i = 1, . . . , M,

conditions (i) and (iii) of Lemma 2.1 are satisfied.
(b) λ0 + ∑

i∈K(λi + λn+1−i ) < λ1. Let us index W in decreasing order and see that Fiedler’s
conditions from Lemma 2.2 are satisfied. We observe that

max{λi, −λn+1−i} � max{λi+1, −λn−i} for i = 1, . . . , M − 1,

so the order of the ωi’s only depends on the position of λ0 + ∑
i∈K(λi + λn+1−i ) among

them. Assume

ω0 = max{λ1, −λn} � · · · � ωp−1 = max{λp, −λn+1−p}
� ωp = λ0 +

∑
i∈K

(λi + λn+1−i ) � ωp+1

� · · · � max{λM, −λn+1−M}
for an index p ∈ {1, . . . , M}.
Let us prove condition (i) of Lemma 2.2 by induction. Clearly ω0 � λ0. Let us see that∑

0�i�m−1 ωi �
∑

0�i�m−1 λi , for an indexmwith 1 � m � M − 1, implies
∑

0�i�m ωi �∑
0�i�m λi . It can happen that:

(b1) m < p. If m + 1 /∈ K , then ωm = max{λm+1, −λn−m} = λm+1 � λm and
m∑

i=0

ωi �
m−1∑
i=0

λi + ωm �
m∑

i=0

λi.

If m + 1 ∈ K , the Kellogg condition K1 for k = m + 1 gives

−λn−m � λ0 +
∑

i∈K,i�m

(λi + λn+1−i ).

Therefore
m∑

i=0

ωi =
m−1∑
i=0

max{λi+1, −λn−i} + ωm

=
∑

i /∈K,i�m

λi −
∑

i∈K,i�m

λn+1−i − λn−m

�
∑

i /∈K,i�m

λi −
∑

i∈K,i�m

λn+1−i + λ0 +
∑

i∈K,i�m

(λi + λn+1−i )

=
m∑

i=0

λi.

(b2) m � p. In this case we have
m∑

i=0

ωi =
p−1∑
i=0

max{λi+1, −λn−i} + ωp +
m∑

i=p+1

max{λi, −λn+1−i}

=
m∑

i=1

max{λi, −λn+1−i} + λ0 +
∑
i∈K

(λi + λn+1−i )
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= λ0 +
∑

i /∈K,i�m

λi −
∑

i∈K,i�m

λn+1−i +
∑

i∈K,i�m

(λi + λn+1−i )

+
∑

i∈K,i>m

(λi + λn+1−i ) �
m∑

i=0

λi.

Finally condition (iii) of Lemma 2.2 can be easily verified.

The list {6, 1, 1, −4, −4} shows that the inclusion is strict. In fact, the matrix⎛⎝ 4 0 2
3/2 4 1/2
0 6 0

⎞⎠
has spectrum {6, 1, 1}, diagonal entries 4, 4, 0 and the sum of the elements of each one of the lists
{4, −4}, {4, −4}, {0} is nonnegative. �

The list {6, 1, 1, −4, −4} shows that Perfect 2+ does not imply Soto 2 and we do not know if
Soto 2 implies (or not) Perfect 2+.

With the exception of the Soto 2 realizability criterion, we observe that the Perfect 2+ re-
alizability criterion contains all the criteria compared in this section. The Soto–Rojo condition
extends the Perfect 2+ realizability criterion, allowing a more general partition accomplished on
a negative portion of the list �. In [19] it is shown that Soto 2 implies Soto–Rojo and the inclusion
is strict. Thus, Soto–Rojo contains all realizability criteria, which we have compared in this work,
but we do not know if the inclusion of Perfect 2+ in Soto–Rojo is strict.

Finally, we observe that the Wuwen realizability criterion is an atypical criterion, in the sense
that it needs a realizable list as a hypothesis.

Next we show a map with all the relations between the sufficient conditions studied and we
give a collection of examples to explain them. Part of this map appears in [9].

P 1 ∩ C : {3, 1, −1},
P 1 ∩ C : {3, 1, −1, −1},
P 1 ∩ C ∩ Sa : {2, 1, −1},
P 1 ∩ Su ∩ C ∩ Sa : {2, 0, −2},
P 1 ∩ Su ∩ C ∩ Sa : {1, 1, −1},
P 1 ∩ Su ∩ C ∩ Sa : {5, 2, −2, −3},
P 1 ∩ Su ∩ C ∩ Sa : {5, 2, −1, −1, −3},
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Su ∩ SP ∩ P 1 ∩ Sa : {1, 1, −1, −1},
Su ∩ SP ∩ P 1 ∩ Sa ∩ F : {4, 3, −1, −2, −3},
Su ∩ SP ∩ P 1 ∩ F ∩ K : {3, 2, −1, −1, −3},
Su ∩ SP ∩ P 1 ∩ K : {3, 2, 2, −1, −1, −1, −1, −1, −2},
Su ∩ SP ∩ P 1 ∩ Sa : {2, 2, 0, −1, −2},
Su ∩ SP ∩ P 1 ∩ Sa ∩ F : {5, 4, −2, −4},
Su ∩ SP ∩ P 1 ∩ F ∩ K : {6, 5, 1, −3, −3, −5},
Su ∩ SP ∩ P 1 ∩ K : {3, 3, −1, −1, −2, −2},
SP ∩ P 1 ∩ Sa : {3, 1, −2, −2},
SP ∩ P 1 ∩ Sa ∩ F : {5, 2, 2, −1, −1, −3, −3},
SP ∩ P 1 ∩ F ∩ K : {6, 4, 0, −2, −3, −5},
SP ∩ P 1 ∩ K : {5, 4, 3, −2, −2, −2, −2, −4},
SP ∩ P 1 ∩ Sa : {14, 6, 1, −7, −8},
SP ∩ P 1 ∩ Sa ∩ F : {4, 2, 1, −3, −3},
SP ∩ P 1 ∩ F ∩ K ∩ So : {6, 4, 1, −3, −3, −5},
SP ∩ P 1 ∩ F ∩ K ∩ So : {9, 7, 4, −3, −3, −6, −8},
SP ∩ P 1 ∩ K ∩ B ∩ So : {5, 3, −2, −2, −2, −2},
SP ∩ P 1 ∩ K ∩ B ∩ So : {7, 7, 5, −3, −3, −3, −3, −6},
B ∩ So ∩ P 2+ : {3, 3, 1, 1, −2, −2, −2, −2},
B ∩ So ∩ P 2+ :?,
B ∩ So ∩ P 2+ : {6, 1, 1, −4, −4}.

Finally the list {7, 5, −4, −4, −4} is realizable but does not verify the Soto nor Perfect 2+
conditions. This list verifies the necessary and sufficient conditions given in [6].
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