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Abstract

The real nonnegative inverse eigenvalue problem (RNIEP) is the problem of determining necessary and
sufficient conditions for a list of real numbers A to be the spectrum of an entrywise nonnegative matrix.
A number of sufficient conditions for the existence of such a matrix are known. In this paper, in order to
construct a map of sufficient conditions, we compare these conditions and establish inclusion relations or
independency relations between them.
© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A18; 15A19; 15A51

Keywords: Real nonnegative inverse eigenvalue problem; Sufficient conditions; Nonnegative matrices

1. Introduction

The nonnegative inverse eigenvalue problem is the problem of characterizing all possible
spectra A = {Aq, ..., A,} of entrywise nonnegative matrices. This problem remains unsolved.
Important advances towards a solution for an arbitrary n have been obtained by Loewy and
London [8], Reams [14] and Laffey and Meehan [10,6].
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When A is a list of real numbers we have the real nonnegative inverse eigenvalue problem
(hereafter RNIEP). This problem is only solved for n < 4 by Loewy and London [8]. A number of
sufficient conditions have been obtained for the existence of a nonnegative matrix with prescribed
real spectrum A. For a long time it was thought that the RNIEP was equivalent to the problem
of characterizing the lists of real numbers which are the spectrum of nonnegative symmetric
matrices. Johnson, Laffey and Loewy [4] in 1996 proved that both problems are different.

The first known sufficient conditions for the RNIEP were established for stochastic matrices
[21,11,12,2]. As is well known, the real stochastic inverse eigenvalue problem is equivalent to
the RNIEP and Kellogg [5] in 1971 gives the first condition for nonnegative matrices. Other
conditions for the RNIEP in chronological order are in [15,3,20,1,22,16,19]. Only a few results
are known about the relations between them. Our aim in this paper is to discuss those relations and
to construct a map, which shows the inclusion relations and the independency relations between
these sufficient conditions for the RNIEP.

Some of the sufficient conditions considered in this paper also hold for collections of complex
numbers, see [22,7].

The paper is organized as follows: Section 2 contains the list of all sufficient conditions that
we shall consider, in chronological order. Section 3 is devoted to establishing inclusion relations
or independency relations between the distinct conditions.

2. Sufficient conditions for the RNIEP

In this paper we understand by a [list a collection A = {Aq, ..., X,;} of real numbers with
possible repetitions. By a partition of a list A we mean a family of sublists of 4 whose disjoint
union is /. As is commonly accepted, we understand that a summatory is equal to zero when the
index set of the summatory is empty.

We will say that a list A is realizable if it is the spectrum of an entrywise nonnegative matrix.

The RNIEP has an obvious solution when only nonnegative real numbers are considered, so
the interest of the problem is when there is at least one negative number in the list.

An entrywise nonnegative matrix A = (a; 1)7, j=1 is said to have constant row sums if all its
rows sum up to the same constant, say A, i.e.

n
Zaijzk, i:l,...,n.
j=1

The set of all entrywise nonnegative matrices with constant row sums equal to A is denoted by
CSL .

In what follows we list most of the sufficient conditions for the RNIEP in chronological order.
The first, and one of the most important results in this area was announced by Suleimanova [21]
in 1949 and proved by Perfect [11] in 1953.

Theorem 2.1 (Suleimanova [21], 1949). Let A = { g, A1, ..., Ay} satisfy

ro = |A| forxeAandxo+Z,\,->o, 1)
)»,'<0
then A is realizable in €%,

We point out that this theorem has been extended to collections of complex numbers. In fact,
Laffey and gmigoc characterized when a collection of complex numbers {p, Az, ..., A,}, closed
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under complex conjugation, where p > 0 and Re(X;) < 0,for j =2, ..., n, is realizable (see [7,
Theorem 3]).

The next result is a generalization of a condition given by Suleimanova [21, Theorem 3] and
proved by Perfect [11, Theorem 3].

Theorem 2.2 (Suleimanova-Perfect [21,11], 1949-1953). Let A = {Ao, Ao1s - - - Aorgs A1, A1
cos M s Ars Arty ooy Ay, ) satisfy

MM forred and Aj+ Y Aji=0forj=0.1,....r 2)
Aji<0

then A is realizable in €%, .

Definition 2.1. A set %" of conditions is said to be a realizability criterion if any list of numbers
A satisfying the conditions in ¢ is realizable. In this case, we shall say that A is " realizable.

Definition 2.2. A list of numbers A is said to be piecewise " realizable if it can be partitioned
as Ay U---U A; in such a way that A; is # realizable fori =1, ..., 1t.

In this paper /", from the previous definitions, will be the surname of an author(s). For example,
alist verifying Theorem 2.1 will be said to be Suleimanova realizable and if it verifies Theorem 2.2
it will be said to be Suleimanova-Perfect realizable and, in this case, also piecewise Suleimanova
realizable.

Theorem 2.3 (Perfect 1 [11], 1953). Let
A={)\'05)"17)"119"")"]l‘lv‘-'5)"1‘7)"}"17‘-'5)"1’1‘,78}9
where
M= IAl foried Y rz0,8<0,
rea
Aj20andrj; <0 forj=1,...,randi=1,...,1t;.
If
L

Aj+8<0and)»j+2)»ﬁ<0 forj=1,...,r, 3)

i=1
then A is realizable in €5, .
Theorem 2.4 (Perfect 2 [12], 1955). Let {Ag, A1, ..., A} be realizable in €%, by a matrix
with diagonal elements wg, w1, ..., w, and let A = {do, A1, ..., Ars Apgly - - - s Ap} With —Ag <

A < O0fori=r+1,...,n. If there exists a partition {Ao1, ..., Ao} U {A11, ..., Ayt U U
{Ar1s ..o, Ars, } (some or all of the lists may be empty) of {Ar+1, ..., An} such that

t
a)i+Zki/~>0 fori=0,1,...,r 4)
j=I

then A is realizable in €% ;,,.
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Although Perfect gives the previous theorem for stochastic matrices, the normal form of a
stochastic matrix allows us to give the theorem for the nonnegative case. Note that originally the
w;’s are diagonal elements of a stochastic matrix. When in the previous theorem the elements of

the list {X9, A1, ..., A} are all nonnegative there always exists a realization of this list in .%,,,.
We will call this condition Perfect 2%, i.e. Theorem 2.4 when A; > Ofori =0, 1,...,r (see [12,
Theorem 3]).

All the previous conditions have proofs which are constructive, in the sense that they allow us
to construct a realizing matrix.

In order to make use of Theorem 2.4, Perfect [12] gives sufficient conditions under which
Ao, A1, - - ., Ar and wg, w1, . . ., w, are the eigenvalues and the diagonal elements, respectively, of
a matrix in €.%;,,. For r = 1 and r = 2 she gives necessary and sufficient conditions.

Lemma 2.1. Let A = {A1,..., A}, with A1 > |X| for A € A, realizable. The real numbers

w1, ..., w, are the diagonal elements of a matrix in €5 ), with spectrum A if
DO0<w <Ay, fori=1,...,r;
(i) o1+ +or =r1+- -+ A
(i) w; =2 Ajand wy 2 A, fori =2,...,r.

Fiedler gives other sufficient conditions for the w;’s.

Lemma 2.2 (Fiedler [3], 1974). Let Ay = -+ > Ay, with Ay 2 Ay, and w1 =2 -+ 2w, =0
satisfy

DY A=l wifors=1,....,n—1;
(i) A K wj—1fori=2,...,n—1.

Then there exists an n X n symmetric nonnegative matrix with eigenvalues A1, . .., A, and diag-
onal entries w1, ..., wy,.

Theorem 2.5 (Ciarlet [2], 1968). Let A = {1g, A1, ..., Ay} satisfy
) .
p"]lé?a ]=1’anv (5)

then A is realizable.
Theorem 2.6 (Kellogg [5], 1971). Let A = { o, A1, ..., An} with Lo = |\| for L € A and A; >

Aiy1 fori =0,...,n— 1. Let M be the greatest index j (0 < j < n) for which L; > 0 and
K={iel{l,...,[n/2]}/%i 2 0, Ai + Apy1-i <O} If

hot D (it i) Fhag1k 20 forallk € K, (©)
ieK,i<k
and
n—M
M+ Y it + Y A =0, (7
iekK j=M+1

then A is realizable.
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Theorem 2.7 (Salzmann [15], 1972). Let A = {ho, A1, ..., Ay} with A; = Ajy1 fori =0, ...,
n—1.1f

Y x>0, ®)
0<j<n
and
)\i‘i‘)\nfi 1 .
> <n+1 ij, i=1,...,(n/2], 9)
0<j<n

then A is realizable by a diagonalizable nonnegative matrix.

Theorem 2.8 (Fiedler [3], 1974). Let A = {Ag, A1, ..., Ap} WithA; > Aip1fori =0,...,n— 1.
If
1
Rothn+ D > o Z % + Anil, (10)
reA 1<i<n—1

then A is realizable by a symmetric nonnegative matrix.

Soules in 1983 gives a constructive sufficient condition for symmetric realization. The inequal-
ities that appear in this condition are obtained by imposing the diagonal elements of the matrix
P diag(A1, ..., A,) P! to be nonnegative, where P is an orthogonal matrix with a particular sign
pattern (see [20, Lemma 2.1 and Lemma 2.2]).

Theorem 2.9 (Borobia [1], 1995). Let A = {ho, A1, ..., Ap}withAj = Ajp1fori =0,...,n—1
and let M be the greatest index j (0 < j < n) for which X; > 0. If there exists a partition
JTU. o UJrof {Ap+1s -, An) Such that

MZMZ > Y Az )k (1
redy relds

satisfies the Kellogg condition, then A is realizable.
Theorem 2.10 (Wuwen [22], 1997). Let A = {A1, ..., Ay} be a realizable list with L1 > |A| for
L € A and let ¢; be real numbers fori =2, ...,n.Ife1 =Y +_, ||, then the list
M +enratea, o An +end
is realizable.

We point out that Theorem 2.10 is a corollary of a result of Wuwen [22, Theorem 3.1] which
holds for collections of complex numbers.

Theorem 2.11 (Soto 1 [16], 2003). Let A = {A1, ..., Ay} with Xj = Aip1fori=1,...,n—1.
Let Sk = Ak + M—k+1, k=2, ..., |n/2] with Snzj = min{)\%, 0} for n odd. If

MZ=h— Y S (12)
S <0

then A is realizable in €, .
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In the context of Theorem 2.11 we define

T(A) =hi+hn+ ) Sk
Sr<0

695

In this way, (12) is equivalent to T'(A) > 0. Observe that, if the list A is Soto 1 realizable then

the new list

M= —hn = Y S
Si <0

ordered decreasingly, is also Soto 1 realizable (if A} < A2 the new inequality (12) is

ez —ha = Y Sk
Sk<0

for the same S; < 0).

Theorem 2.12 (Soto 2 [16], 2003). Let A be a list that admits a partition

M, AU UG, A )
with A1 2 [M| forh € A, Ajj 2 Aj jv1anddiy 2 0fori=1,...,rand j =1,
list {Ai1, ..., Ai;} of the partition we define S; and T; as in Theorem 2.11, i.e.

Sij = Aij + Aiy—je1 for j=2,..., [ti/2]
Si,+1)/2 = min{A; ;41),2,0} iftiisoddfori=1,...,r

nz)hi]_'_)hiti‘l_ Z S,'j fori=1,...,r.

Sij<0
Let
L =max { —Ay — S17, max {A;
11 Z 1j 2<i<r{ i1}
$1;<0
If

A1 =L — Z 1;,

T; <0,2<i<r

then A is realizable in €, .

Theorem 2.13 (Soto—Rojo [19], 20006). Let A be a list that admits a partition
A, AU U, Ay )

..., tj. For each

13)

(14)

with Ay 2 |A| for A e A, Ajj = Ajjs1 and Ay =20 fori=1,...,r and j=1,...,t. Let

w1, ..., w, benonnegative numbers such that there exists anr X r nonnegative matrix B € €%,
with eigenvalues A1, A21, . .., A1 and diagonal entries wy, . . ., .. If the lists {w;, Ai2, . .., Aig; }
with w; > Ajp, fori =1, ..., r, are realizable, then A is realizable in €%, .

The sufficient conditions of Salzmann, Soto 1, Soto 2 and Soto—Rojo have constructive proofs,

which allow us to compute an explicit realizing matrix.
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3. Inclusion relations

In this section we compare the realizability criteria for the RNIEP. In what follows, we will
understand by Fiedler the sufficient condition for the RNIEP given at Theorem 2.8.

Theorem 3.1

1. Ciarlet implies Suleimanova and the inclusion is strict.

2. Ciarlet, Suleimanova and Suleimanova-Perfect are independent of Salzmann.
3. Suleimanova implies Fiedler and the inclusion is strict.

4. Suleimanova-Perfect is independent of Fiedler.

Proof. 1.Let A = {A¢, A1, ..., A,} verify the Ciarlet condition: |4 ;| < An—oforj =1,...,n.Then
Ao 2 nlAjl > |Aj|for j=1,...,nand

k0+2kj>Xo+Z_TM20,

;<0 ;<0
so A verifies the Suleimanova condition. A = {2, 0, —2} shows the inclusion is strict.
2. The list {2, 1, —1} verifies Ciarlet and Suleimanova but not Salzmann and {3, 1, —2, —2}
verifies Salzmann but not the Ciarlet nor Suleimanova-Perfect conditions.
3. Let A = {X\g, A1, ..., Ap} verify the Suleimanova condition. We can assume Ag > Aj >
-++ = Ay. We will prove the result for n even and A,,, < 0 because for A,/ > 0 and n odd the
proofs are similar. For this situation we have

n—1 n—1
200+ 2)+ Y ks = 3 D0+ ]
j=1 =1
—1
=200 +An) + ) (A +Aumj = 1A A Anejl) +An — [Aa]
1
1o
=200+)+2 Y Gj+rj)+2h >0

—1

J
)L]-+)Ln,j<0

[STE

~.
Il

where the last inequality is verified because of the Suleimanova condition. The list {1, 1, —1, —1}

shows the inclusion is strict.
4.Thelist {3, 2, —1, —1, —3} verifies Suleimanova-Perfect but not Fiedlerand {4, 2, 1, —3, —3}

verifies Fiedler but not Suleimanova-Perfect. [

Fiedler proves in [3] that his condition includes the Salzmann condition. Moreover, since
Suleimanova-Perfect is a piecewise Suleimanova condition and Suleimanova implies Fiedler,
then Suleimanova-Perfect implies the piecewise Fiedler condition. As a conclusion, we observe
that the piecewise Fiedler realizability criterion contains all realizability criteria in Theorem
3.1

Theorem 3.2. Soto 1 is equivalent to Fiedler.
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Proof. Let A = {A{, ..., Ay}, Sx and S.11 be as in Soto 1. If A verifies Fiedler then
2

n n—1
1
A+ Ay +};Ak > 5; Ik 4 An—it1]-

This inequality can be written as

n/2
n—1 DAk + An—kt1] for n even,
k=2
201 4+ An) + E A = /2]
k=2 > [hk+ Auiet |+ |hagt | forn odd
k=2

and in both cases it is equivalent to

200 +h) 2 -2 ) S
S <0

which is Soto 1. [

The Soto result is constructive while the Fiedler result is not.

Fiedler proves in [3] that his condition implies the Kellogg condition and that the inclusion is
strict. Fiedler also proves that the Kellogg condition guarantees symmetric realization. It is well
known that Kellogg implies Borobia.

Theorem 3.3

1. Suleimanova-Perfect and Kellogg are independent.
2. Suleitmanova-Perfect implies Borobia and the inclusion is strict.

Proof. 1. The list {3, 1, —2, —2} verifies Kellogg and not Suleimanova-Perfect. The list {3, 3,
—1, —1, =2, —2} verifies Suleimanova-Perfect and not Kellogg.

2. Let A ={X0, 01, -+ A0gs s ALl - vy Ao oes Ary Arl,y oo oy Ay, } verify Suleimanova-
Perfect: Ao > [A| for A € A and A; + ZA/;<O)‘ﬂ >0for j=0,1,...,r. We can assume Ag >
A1 2 .-+ 2 Ar. We can also assume that for A;; > 0 we have A, > A;;: if there exist indexes
0<i<randl < j <t with Aij > Ar we can exchange them because

bij Y ek > A Y Ak 20,
Ak <0 Ak <0
Let A41 = --- > Ay be the ordered list {A € A/L>0,A#1;i=0,1,...,r}.
If A has no negative elements the result is clear; otherwise, we can assume {A;; <0, j =
I,...,t;} # 0 for 0 <i <r. Let us define u; = Zx,,-<0)‘ij fori =0,1,...,r. We can also
assume that 1, > --- > py > po: if there exist indexes i < j with p; > uj we can exchange
them because

Wi >pj=>rj+pu;>Arj+u; =0,
hizhj=hritupnj=rj+pn;=0.

We shall now prove that

A== 2022 Z2Ay > U =Ayy1 2 2 o = AM4rsl}
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verifies Kellogg. Let K = {i € {1,...,r +1}/A; + pi—1 <0} = {i1 < --- < iy}. Condition (6)
is verified because, for all p < ¢, we have

p—1 p—2
Ao + Z()»ij + wij—1) + ti,—1 = (o + pij—1) + Z(Mj + tijp—1) + Qi+ pi,—1)
j=1 j=1
p—1
> (Mo + o) + > (hi; + i) = 0.
j=1

For condition (7) we observe that Z;EMH Aj=up, if M =r and Z;E\/IH Aj = 0 in other
cases. If r + 1 ¢ K, then

r+l

q
M+ Y Gyt + Y A
j=1

Jj=M+1

q
=M+ Z(?w'j + wij—1) +
j=1
q—1
= (Ao + pij—1) + Z(M,- + wij -1 + i, + 1)
j=1
q—1
> (ko + 10) + (i + i) + G + ) > 0.
j=1

If r + 1 € K, then the former inequalities hold replacing u, by O.
The previous example {3, 1, —2, —2} shows the inclusion is strict. [

Theorem 3.4

1. Ciarlet, Suleimanova, Suleimanova-Perfect, Salzmann, Soto 1 and Kellogg are independent
of Perfect 1.

2. Perfect 1 with all the lists of nonpositive numbers, {A;1, ..., Ai;; }, with one element implies
Kellogg. ~
3 If A={Ao, M, A1, oo AMeys ooy Ary Arl, oo, Ay, 8} verifies Perfect 1 then A = {Ao, A1,

| ty
D it Mjs e Ay 200y Arjy 8} 100,
4. Perfect 1 implies Borobia and the inclusion is strict.

Proof. 1. Thelist {5, 4, 3, —2, —2, —2, —2, —4} verifies Perfect 1 but not any of the other condi-
tions. The list {3, 1, —1} verifies Ciarlet (so Suleimanova, Suleimanova-Perfect, Soto 1 (Fiedler)
and Kellogg too) and Salzmann but not Perfect 1.

2. Let A = {ho, A1, A1, .- Ary Ar1, 8} verify Perfect 1: Ag > |A| for A € A, Zke/l)\ >0,
Ajz0andAj; <Oforj=1,...,randd <O0,A; +8 <OandA; +A;; <Oforj=1,...,r.
We can assume Ao > A > - 2> A,. We can also assume that § = min{§, A1, j =1,...,r}:if

there exists an index i with § > A;; we can exchange them because

Aj+Al<A;j+6<0 j=1,...,rand A; +6 <0.
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We can also assume that A,; > --- > Aqq: if there exists an index i < j with A;; > A;; we can
exchange them because
Aj1 <At = A +Aj1 <A+ A1 <0,
Az hj = Aj+ri1 <A+ 21 <0.
Now let us see that the list
AMZMZ 221 =41 2 2 A1 = Ay 28 = Ay
satisfies Kellogg. Let

. 2r +1
K=lieft . ..| = /A,->0,A,»+A2,+2,,»<0 c{l,....r)

and
. r if A,1 <0
= P> =
M = max{i/Ai = O} {r 5,521 if Apyy =0and Apyypy <O.
Note thatif i € {1,...,r} then
A+ Xoypqo—i <0andi € K
or

Ai +Az40-i=0andi ¢ K,

so for k € K we have

Mo+ Y i+ Aarra-i) +dar42k
ieK
i<k

k—1
= Ao+ Z(M + A2r2-i) + A2r g2k
i=1
k—1
=X +8+ Y i+ i)
i=1

k—1
>h+8+ ) (i +A,1)+Z(A +ai) =Y A>0
i=1 i=k rea

which proves (6). Now let us see that (7) holds:

2r+1-M
MAY Gitrr)+ Y, A
icK j=M+1
2r+1-M
—)»0+Z()» Fharpa)+ Y A= A
j=M+1 red

3. It is enough to prove Ao + lele Aijj =z 0fori=1,...,r

14
M+ hij > xo+2)\u+/\ +5+Z )»k-f-z)»k] => x>0
j=1

rea
k#l
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The inequality is given by the Perfect 1 conditions applied to A: A; +8 <0 and i +
thkzl Akj < 0.

4. The inclusion is clear from Claims 2 and 3 of this theorem and because Kellogg implies
Borobia. The list {3, 3, —1, —1, —2, —2} verifies Borobia but not Perfect 1. [

Radwan [13] in 1996 proved that the Borobia condition guarantees symmetric realization.
As a conclusion from the comparison of the previous realizability criteria, we observe that the
Borobia realizability criterion contains all of them. The next diagram describes this conclusion

Ciarlet = Suleimanova = Suleimanova-Perfect

Fiedler <= Soto 1 = Kellogg = Borobia.
7 7

Salzman Perfect 1
Theorem 3.5

1. Piecewise Soto 1 implies Soto 2 and the inclusion is strict.

2. Suleimanova-Perfect implies Soto 2 and the inclusion is strict.
3. Perfect 1 implies Soto 2 and the inclusion is strict.

4. Kellogg and Borobia are independent of Soto 2.

Proof. 1. The inclusion is clear. The list {8, 3, —5, —5} U {6, 3, —5, —5} shows it is strict.

2. We know that Suleimanova implies Fiedler (Soto 1), Theorem 3.1 3., so Suleimanova-Perfect
implies piecewise Soto 1 and also, because of the previous result, Soto 2. The list {3, 1, —2, —2}
shows the inclusion is strict.

3. Let
A={)\O,)"l’)"ll’~~-a)\1t1’~--’)"r7)"r17~--,)"rtra6}
verify Perfect 1: Ao > |X|for A € A’er/ﬂ‘ 20,6 <0,A; >20andA;; <Oforj=1,...,rand
i=1,...,t;,A;+6 <0and 2; +Zl[‘j:1)"ji < O0forj=1,...,r.Letus see that the partition
of A

A=A, SJUA, A, o A YU UG A, oo Ay, )

verifies Soto 2. Using the notation of this criterion, Theorem 2.12, we have T; = A ; + Zf’zl Aji <
Oforj=1,...,r and L = —4. Finally

,
—L+ > Ti=x+s+Y Tj=) 120,
j=1

T;<0,1<j<r reA
proves the result.
4. The list {3,3,1,1, -2, =2, —2, —2} verifies Soto 2, with the partition {3, 1, =2, -2} U
{3, 1, =2, —2}, but not Kellogg nor Borobia. The list {9, 7, 4, —3, —3, —6, —8} verifies Kellogg
but not Soto 2. [

Remark 3.1. In [18] it was shown that the Kellogg and Borobia conditions imply, in a “certain
sense”, the Soto 2 condition. In [17] it was shown that the Soto 2 condition guarantees symmetric
realization.
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Lemma 3.1. Let A = {Ao, A1, .-y Ary Apt1s - - -, An} verify Perfect 2 (respectively Perfect 2%)
andletq e {r+1,...,n}.If g = Zlgjgpﬂj with wj < 0, then
{Ao, A1, "'5)"1‘7)"r+17"~7)\'q—1’“17 ~--,H-pa)\q+l’ e Agd
also verifies Perfect 2 (respectively Perfect 27).
Proof. The result is clear because by replacing A, by u1, ..., u, does not change the existence

of the matrix in ¢.%;,, with eigenvalues Ag, A1, ..., A, and diagonal elements wp, w1, ..., @,
nor the realizability of the new list. [

Perfect [12] proved that Perfect 27 includes Suleimanova-Perfect and Perfect 1.
Theorem 3.6. Borobia implies Perfect 2 and the inclusion is strict.

Proof. From Lemma 3.1 it is enough to prove the result for A = {Xo, ..., A, } verifying Kellogg:
M= 2 g, ho 2 Ml K={ief{l, ..., n/2]}/xi 20, A + Apy1—i <0}, M =max{j €
{0,...,n}/A; > 0} and the conditions

KI: do+ Y (hi+Anp1-i) +dnp14 =0 forallk € K,

ieK,i<k
n—M
K2: Ao+ ) (i +dupi-i) + ) 4 >0
iek j=M+1
Let us see that {Ap41, ..., A} can be partitioned as {Ao1, ..., Ags} U {A11, ..., 415} U---U
{Am1, ... Amy, ) insuch a way that there exists alist W = {wo, ..., @y} formed by the diagonal
elements of a realization of {Ag, ..., Az} such that
1
wi+ZAij20 fori =0,1,..., M. (15)

Let us consider the partition

Aprsts s A b P} A hs oo (A1}
and the list

W= 1A+ Z()\i + Aut1-i), max{A;, —A,p1-}, i=1,...,. M
ieK
It is clear that the lists of the partition and the elements of W can be coupled (in fact, in the order
they are written) to verify (15).
Let us see that W can be the list of diagonal elements of a realization of {Ag, . .., A} showing
that they verify the sufficient conditions due to Perfect, Lemma 2.1, or to Fiedler, Lemma 2.2.
Condition (ii) in both lemmas is the same and is satisfied:

D w=ho+ Y i+t l)+2max{x,,— nti-i)

weW ieK
—)»0+Z()\ + Angi1— z)+Z)» —Z)»n-i-l z—Z)»
ieK i¢K ieK

Conditions (i) and (iii) in both lemmas are different and depend on the indexing of W or the order
of its elements.
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We have the following cases:

(a) Ao + ZieK()‘i 4+ Ang1-i) = A1. It can be seen that by indexing W as

wo =20+ Y (A + Ang1-i). 0 = max{hi, —hny1} fori=1,....M
ieKk
conditions (i) and (iii) of Lemma 2.1 are satisfied.

(b) Ao + Zie[(()‘i + An+1-i) < A1. Let us index W in decreasing order and see that Fiedler’s

conditions from Lemma 2.2 are satisfied. We observe that
max{A;, —Anyt1-i} 2 max{ijt1, —Ap—;} fori=1,...., M —1,

so the order of the w;’s only depends on the position of 1o + Zi ex Ai + Apg1-;) among
them. Assume

wo=max{Ay, A} = --- 2 wWp—-1 = max{)tp, _)\n+lfp}
Z wp = Ao+ Z(Ai + Anti1-i) = @pyi
iekK

Z -z max{iy, —Apy1-m}

foranindex p € {1,..., M}.

Let us prove condition (i) of Lemma 2.2 by induction. Clearly wg < Ag. Let us see that
Zogigm—l w; < Zogigm—l Ai,foranindexm with1 < m < M — 1,implies Zo<i<m w; <
> _0<i<m *i- It can happen that:

b)m < p.Ifm+1 ¢ K, then w,, = max{d,;+1, —An—m} = Am+1 < Ay and

m m—1 m

Do <Y hitom <Y ki

i=0 i=0 i=0

If m 4+ 1 € K, the Kellogg condition K1 for k = m 4 1 gives
—An—m < Ao+ Z (A + )\n+l—i)-

ieK,i<m

Therefore

m—1

m
Z w; = Z max{A; 11, —Ap—i} + wm
= ,

i=0
Z Ai — Z )\n—H—i — An—m

i¢K.i<m ik i<m
< D k= > i+t D (i)
i¢K.i<m ik i<m ik i<m

m
Z)\.i.
i=0
(b2) m > p. In this case we have

m p—1 m

Zwi = ZmaX{MH, —An—i} +@p + Z max{A;, —Ap4+1-i}
i=0 i=p+1

i=0
m

= Zmax{)»i, —An+1-i} + Ao + Z(Ki + Anti1-i)
i=1 icK
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= )‘O —+ Z )"i — Z )Vn+1—i + Z ()\1 +)\vn+l—i)

i¢K,i<m ieK,i<m ieK,i<m
m
+ ) it ) <Yk
ieK,i>m i =0

Finally condition (iii) of Lemma 2.2 can be easily verified.

The list {6, 1, 1, —4, —4} shows that the inclusion is strict. In fact, the matrix

4 0 2
32 4 1)2
0 6 0

has spectrum {6, 1, 1}, diagonal entries 4, 4, 0 and the sum of the elements of each one of the lists
{4, —4}, {4, —4}, {0} is nonnegative. [J

The list {6, 1, 1, —4, —4} shows that Perfect 27 does not imply Soto 2 and we do not know if
Soto 2 implies (or not) Perfect 2.

With the exception of the Soto 2 realizability criterion, we observe that the Perfect 27 re-
alizability criterion contains all the criteria compared in this section. The Soto—Rojo condition
extends the Perfect 2 realizability criterion, allowing a more general partition accomplished on
anegative portion of the list /. In [19] it is shown that Soto 2 implies Soto—Rojo and the inclusion
is strict. Thus, Soto—Rojo contains all realizability criteria, which we have compared in this work,
but we do not know if the inclusion of Perfect 2 in Soto—Rojo is strict.

Finally, we observe that the Wuwen realizability criterion is an atypical criterion, in the sense
that it needs a realizable list as a hypothesis.

Next we show a map with all the relations between the sufficient conditions studied and we
give a collection of examples to explain them. Part of this map appears in [9].

Suleimanova = Su
Suleimanova-Perfect = SP
Perfect 1 = P1

Perfect 2 = P2"

Ciarlet = C'
Kellogg = K
Salzmann = Sa
Fiedler = F
Borobia = B
Soto 2 = So

X = Condition X is not verified

PINC:{3,1,—1},
PINC:{3,1,—1,—1},
PINCNSa:{2,1,—1},
PINSunCnSa:{2,0 -2}
PINnSunCnSa:{l,1,-1},
PINSunCNSa:{52, -2,-3},
PlNnSunCnSa: {52, —1,-1,-3},
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SunSPNPINSa:{l,1,—-1,-1},
SuNSPNPINSaNF:{4,3 —1,-2, -3},
SunNnSPNPINFNK:{3,2,—1,—1,-3},
SuNnSPNPINK:{3,2,2 —1,—1,—1,—-1,—1, =2},
SuNnSPNPINSa:{2,20 —1,-2}
SunNnSPNPINSaNF:{54, -2, —4},
SunSPNPINFNK :{6,5 1,3, -3, =5},
SunSPNPINK :{3,3,—1,—1, -2, -2},
SPNPINSa:{3,1, -2, -2},
SPNPINSanF:{5272 —1,—1,-3, -3},
SPNPINFNK:{6,4,0, -2, -3, -5},
SPNPINK :{54,3, -2, -2, -2, -2, —4},
SPNPLINSa:{l4,6,1,—7, -8},
SPNPINSaNF:{42,1, -3, -3},
SPNPINFNKNSo:{64,1,-3, -3, -5},
SPNPINFNKNSo:{9,7,4,—3,—-3,—6, 8},
SPNPINKNBNSo: {53, -2, -2,-2, -2},
SPNPINKNBNSo:{7,7,5 -3, =3, =3, =3, —6},
BNSon P2t :{3,3,1,1, -2, -2, -2, -2},
BNSon P2t :,

BNSon P2 :{6,1,1,—4, —4).

Finally the list {7, 5, —4, —4, —4} is realizable but does not verify the Soto nor Perfect 2+
conditions. This list verifies the necessary and sufficient conditions given in [6].
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