

SEMINARIO

Alonso Sepúlveda Castellanos Universidade Federal de Uberlândia, Brasil

Weierstrass semigroup at m+1 rational points in maximal curves which cannot be covered by the Hermitian curve

Abstract:

Let \mathcal{X} be a non-singular, projective, irreducible, algebraic curve of genus $g \geq 1$ over a field \mathbb{F}_q . Fix m distinct rational points P_1, \ldots, P_m on \mathcal{X} . The set finite $H(P_1,\ldots,P_m) \stackrel{q}{=} \{(a_1,\ldots,a_m) \in \mathbb{N}_0^m ; \exists f \in \mathbb{F}_q(\mathcal{X}) \text{ with } (f)_{\infty} = \sum_{i=1}^m a_i P_i\}$ is called the Weierstrass Semigroup in the points P_1,\ldots,P_m . This semigroup is very important to calculate the parameters of algebraic geometry codes (AG codes) over \mathcal{X} . In general, is very complicate determinate this semigroup and various efforts have been possible for certain types of curves. In 2018, joint with G. Tizziotti, we determinate the generator set $\Gamma(P_1, \ldots, P_m)$ of $H(P_1, \ldots, P_m)$ for curves \mathcal{X} with affine plane model f(y) = g(x), using the concept of discrepancy on two rational points P,Q over \mathcal{X} , introduced by Duursma and Park. With certain conditions, we will show how we can calculate the set $\Gamma(P_1, \ldots, P_m)$ for two types of maximal curves which cannot covered by the Hermitian curve. The first family the curves that we present is the example given by Giulietti and Korchmáros: For $q=n^3$, with $n\geq 2$ a prime power, the GK curve over \mathbb{F}_{q^2} is the curve in $\mathbb{P}^3(\overline{\mathbb{F}}_{q^2})$ with equations $\overline{Z}^{n^2-n+1} = Y \sum_{i=0}^n (-1)^{i+1} X^{i(n-1)}$, $X^n + X = Y^{n+1}$. The second family was introduced in 2016, by Tafazolian, Teherán and Torres: For $a,b,s \geq 1,n \geq 3$ integers such that n is odd. Let $q=p^a$ a power of a prime, b is a divisor of a, s is a divisor of $(q^n+1)/(q+1)$ and $c\in \mathbb{F}_{q^2}$ with $c^{q-1}=-1.$ We define the curve $\mathcal{X}_{a,b,n,s}$ over $\mathbb{F}_{q^{2n}}$ with equations $cy^{q+1}=t(x):=\sum_{i=0}^{a/b-1}x^{p^i}$ and $z^M=y^{q^2}-y$ where $M=(q^n+1)/(s(q+1)).$

El seminario tendrá lugar en Webex: Número de reunión: 326 251 668 <u>https://profevirtual.webex.com/profevirtual/j.php?</u> <u>MTID=m785d0eb6c4c215a8edd0bcafedd50a1d</u>

Para participar y recibir la contraseña de la reunión se necesita registro: https://forms.gle/sYzJW1uEdCtef4VX8 Webex (número de reunión 326 251 668) Martes 2 de Junio de 2020 (16:00) Organiza: GIR SINGACOM

