JTN 2015 Universidad de Valladolid June 29-July 3, 2015

The ℓ -adic Hasse norm principle

S.Reglade¹

¹ IMB, University of Bordeaux, France, {stephanie.reglade}@math.u-bordeaux1.fr

Let ℓ be a fixed prime number, the goal of this talk is to present the ℓ -adic Hasse norm principle, to give the expression of its defect group and its arithmetic interpretation. We will then focus applications.

The objects I work with are those of ℓ -adic class field theory built by Jaulent [4]:

for a local field K_p with maximal ideal p and uniformizer π_p , we let:

 $\mathscr{R}_{K_{\mathfrak{p}}} = \varprojlim_{k} K_{\mathfrak{p}}^{\times} / K_{\mathfrak{p}}^{\times \ell^{k}}$: the ℓ -adification of the multiplicative group of a local field, endowed with the logarithmic valuation $\tilde{v}_{\mathfrak{p}}$ [4]

 $\mathscr{U}_{K_{\mathfrak{p}}} = \varprojlim_{k} U_{\mathfrak{p}} / U_{\mathfrak{p}}^{\ell^{k}}$: the ℓ -adification of the group of units $U_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$

for a number field K we let:

 $\mathscr{R}_K = \mathbb{Z}_\ell \otimes_{\mathbb{Z}} K^{\times}$: the ℓ -adic group of principal ideles

 $\mathscr{J}_{K} = \prod_{\mathfrak{p} \in Pl_{K}}^{res} \mathscr{R}_{K_{\mathfrak{p}}}$: the ℓ -adic idele group

 $\mathscr{U}_K = \prod_{\mathfrak{p} \in Pl_K} \mathscr{U}_{K_\mathfrak{p}}$: the subgroup of units

 $\mathscr{C}_K = \mathscr{J}_K / \mathscr{R}_K$: the ℓ -adic idele class group

The starting point of this talk is the ℓ -adic Hasse norm principle.

Theorem 0.0.1. *The* ℓ *-adic Hasse norm principle* [5]

Let L/K be a cyclic ℓ -extension then a principal idele $x \in \mathscr{R}_L$ is a norm globally if and only if it is a norm everywhere locally i.e. for every completion $L_{\mathfrak{P}}/K_{\mathfrak{p}}$.

Thus we naturally introduce the group of defect of this principle defined as the quotient of the elements which are everywhere locally a norm denoted $\mathcal{N}_{L/K}$ over the group of global norms $N_{L/K}\mathcal{R}_L$. We want to give an arithmetic interpretation of this group.

Before going further, let's introduce the notion of logarithmic ramification and logarithmic divisors.

Definition 1. Absolute and relative indexes : [4, def.1.3]

Let K, L be number fields, \mathfrak{p} a prime of K above p and \mathfrak{P} a prime of L lying above \mathfrak{p} . Let's denote $\widehat{\mathbb{Q}_p^c}$ the $\widehat{\mathbb{Z}}$ cyclotomic extension of \mathbb{Q}_p , i.e. the compositum of all \mathbb{Z}_q -cyclotomic extensions of \mathbb{Q}_p for all primes q and $\widehat{K_p^c}$ the
compositum of $K_{\mathfrak{p}}$ and $\widehat{\mathbb{Q}_p^c}$.

i) the absolute and relative logarithmic ramification index of **p** *are respectively:*

$$\tilde{e}_{\mathfrak{p}} = [K_{\mathfrak{p}} : \hat{\mathbb{Q}}^c_{\mathfrak{p}} \cap K_{\mathfrak{p}}] \qquad \tilde{e}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}} = [L_{\mathfrak{P}} : \hat{K}^c_{\mathfrak{p}} \cap L_{\mathfrak{P}}]$$

ii) the absolute and relative logarithmic inertia degree of **p** *are respectively:*

$$\widetilde{f}_{\mathfrak{p}} = [\widehat{\mathbb{Q}}^c_{\mathfrak{p}} \cap K_{\mathfrak{p}} : \mathbb{Q}_{\mathfrak{p}}] \qquad \widetilde{f}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}} = [\widehat{K^c_{\mathfrak{p}}} \cap L_{\mathfrak{P}} : K_{\mathfrak{p}}]$$

- iii) K/\mathbb{Q} is said logarithmically unramified at \mathfrak{p} if $\tilde{e}_{\mathfrak{p}} = 1$, which means $K_{\mathfrak{p}} \subseteq \widehat{\mathbb{Q}_p^c}$.
- iv) L/K is said logarithmically unramified at \mathfrak{p} if $\tilde{e}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}} = 1$, which implies $L_{\mathfrak{P}} \subseteq \widehat{K_{\mathfrak{p}}^c}$.
- v) the degree of a prime \mathfrak{p} is $\tilde{f}_{\mathfrak{p}}p$

Definition 2. Let's define the following map

$$div: \mathscr{J}_K \longrightarrow \mathscr{D}\ell_K$$
$$\alpha = (\alpha_{\mathfrak{p}}) \longmapsto div(\alpha) = \prod_{place finie \ de \ K} \mathfrak{p}^{\widetilde{v_{\mathfrak{p}}}(\alpha_{\mathfrak{p}})}$$

The group of logarithmic divisors of K is: $\mathscr{D}\ell_K = div(\mathscr{J}_K)$ The subgroup of logarithmic divisors of trivial degree is $\widetilde{\mathscr{D}}\ell_{L/K}$ The subgroup of principal divisors is: $\mathscr{P}\ell_K = div(\mathscr{R}_K)$ The logarithmic class group of trivial degree is:

$$\tilde{\mathscr{C}}\ell_{L/K} = \tilde{\mathscr{D}}\ell_{L/K}/\mathscr{P}\ell_{L/K}$$

Definition 3. Let's consider those definitions

- the logarithmic inertia subgroup associated to a prime \mathfrak{p} , denoted $\widetilde{\Gamma}_{L/K,\mathfrak{p}}$, is the subgroup of the decomposition subgroup of \mathfrak{p} which fixes the maximal logarithmically unramified extension of K
- Let's consider the following set of the inertia subgroup $\widehat{\Gamma}_{L/K} = \{ \sigma \in \prod_{\mathfrak{p} \mid \tilde{\mathfrak{f}}_{L/K}} \widetilde{\Gamma}_{L/K,\mathfrak{p}} \text{ such that } \prod_{\mathfrak{p} \mid \tilde{\mathfrak{f}}_{L/K}} \sigma_{\mathfrak{p}} = 1 \}.$

The fundamental theorem is

Theorem 0.0.2. The index of the group of defect [8]Th.3.1.1 Let L/K be a finite and abelian ℓ -extension, let $\tilde{\mathscr{C}}\ell_L^*$ be the kernel of the norm map $N_{L/K} : \tilde{\mathscr{C}}\ell_L \longrightarrow N_{L/K}\tilde{\mathscr{C}}\ell_L$ $\Delta_{L/K}$ the ideal augmentation of the Galois group of L/Kand $\tilde{\mathscr{E}}_K = \{x \in \mathscr{R}_K/\tilde{v}_p(x) = 0\}$ the group of logarithmic units, then we get:

$$|\hat{\Gamma}_{L/K}|(\mathscr{N}_{L/K}:N_{L/K}\mathscr{R}_{L}) = (\tilde{\mathscr{C}}\ell_{L}^{*}:\tilde{\mathscr{C}}\ell_{L}^{\Delta_{L/K}})(\tilde{\mathscr{E}}_{K}:\tilde{\mathscr{E}}_{K}\cap N_{L/K}\mathscr{R}_{L})$$

The main tool to prove this theorem is the logarithmic Hasse symbol [8].

Let's now focus on applications of this theorem.

By [4, Section4], we have

where \tilde{j} denotes the extension morphism.

Using the snake's lemma, we thus get

$$1 \to \tilde{P}\ell_L^G/\tilde{P}\ell_K \to \tilde{D}\ell_L^G/\tilde{D}\ell_K \to \tilde{\mathscr{C}}\ell_L^G/\tilde{j}(\tilde{\mathscr{C}}\ell_K) \to \mathrm{H}^1(G,\tilde{P}\ell_L) \xrightarrow{\phi} \mathrm{H}^1(G,\tilde{D}\ell_L).$$

Proposition 0.0.1. Application [8]Prop.3.3.2

Let L/K be a cyclic ℓ -extension of Galois group G, satisfaying the Gross's conjecture, we get:

$$(\tilde{\mathscr{C}}\ell_{K}: N_{L/K}\tilde{\mathscr{C}}\ell_{L}) = \frac{|\hat{\Gamma}_{L/K}|[L^{c}:K^{c}]}{\prod_{\mathfrak{p}\in P\ell_{K}^{\infty}}d_{\mathfrak{p}}(L/K)\prod_{\mathfrak{p}\in P\ell_{K}^{0}}\tilde{e}_{\mathfrak{p}}(L/K)|\operatorname{Coker}\phi|}$$

Another application of this arithmetic interpretation are the interesting relations we get if we assume that L/K is a cyclic extension such that $|\hat{\Gamma}_{L/K}| = 1$:

Proposition 0.0.2. Application [8]Section 3.4

Let L/K be a cyclic ℓ -extension such that $|\hat{\Gamma}_{L/K}| = 1$, then the previous theorem gives

$$(\tilde{\mathscr{C}}\ell_L^*:\tilde{\mathscr{C}}\ell_L^{\Delta_{L/K}})(\tilde{\mathscr{E}}_K:\tilde{\mathscr{E}}_K\cap N_{L/K}\mathscr{R}_L)=1.$$

Thus, we obtain the following relations:

$$\tilde{\mathscr{C}}\ell_L^* = \tilde{\mathscr{C}}\ell_L^{\Delta_{L/K}} \qquad \tilde{\mathscr{C}}\ell_L^G = N_{L/K}\tilde{\mathscr{C}}\ell_L \qquad \tilde{\mathscr{E}}_K \subseteq N_{L/K}\mathscr{R}_L.$$

We will then, focus on an explicit example of this theorem.

References

- C.Brighi, Capitulation des classes logarithmiques et étude de certaines tours de corps de nombres, thése, Publ. Math. Fac. Sci. Metz, Théor. Nombres (2007), pp. 1–67.
- [2] G.Gras, Class field theory from theory to practice, Springer-Verlag, (2003)
- [3] J.-F. Jaulent, Théorie l-adique du corps des classes, J. Théor. Nombres Bordeaux, 10, fasc.2 (1998), pp. 355–397.
- [4] J.-F Jaulent, Classes logarithmiques d'un corps de nombres, J. Théor. Nombres Bordeaux, 6 (1994), pp. 301–325.
- [5] S.Reglade, A formal approach 'á la Neukirch' of l-adic class field theory, Submitted.
- [6] S.Reglade, *Frobenius et non-ramification logarithmique*, Submitted.
- [7] S.Reglade, Différentes approches de la théorie l-adique du corps des classes, thése, Université de Bordeaux, Théor. Nombres (2014), pp. 1–91
- [8] S.Reglade, Le symbole de Hasse logarithmique, Preprint.
- [9] F.Soriano, Cyclicité et trivialité du groupe des classes logarithmiques, thése, Université de Bordeaux, Théor.Nombres(1995), pp. 1-69.
- [10] F.Soriano, Classes logarithmiques ambiges de corps quadratiques, Acta Arithmetica LXXVIII.3, (1997), pp. 201-219.