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ABSTRACT
To date, the �rst ten trillions of non-trivial zeros of the Riemann zeta func-

tion lie on the line x = 1=2 such as Riemann conjectured in 1859. However, it
will be shown in this talk that the zeros of its partial sums

�n(z) =
nX
k=1

1=kz, n � 2, z = x+ iy,

except for �2(z) whose zeros are aligned on the imaginary axis, are dispersed
of a uniform manner, with respect to the real parts, on vertical strips of the
complex plane having a width which tends to in�nity as n does. Moreover, it
will be also showed a formula to determine the lower bound of every strip. To
do it we will consider the two following facts:
a) For each n � 3, the strip that contains to the in�nitely many zeros of

�n(z) is bounded by the lines of equations x = a�n(z), x = b�n(z), where

a�n(z) := inf f<z : �n(z) = 0g , b�n(z) := sup f<z : �n(z) = 0g . (1)

For the bound a�n(z) which has been de�ned in (1), we have the estimate

a�n+2(z) = �
log 2

log
�
1 + 1

n

� +�n+2, n � 1, (2)

with �n+2 such that
lim sup

n!1
j�n+2j � log 2, (3)

found by G. Mora [12] in 2015 after to study the papers of Borwein, Fee, Fergu-
son and van der Waall [2], on one hand, and Balazard and Velásquez-Castañón
[1], on the other hand. Indeed, in 2007 Borwein et al. [2] gave the �rst estimate
(stated without proof) of a�n(z) by means of the formula

�n(z)
= �(n� 3=2) log 2, (4)

after a hard computation. A little later, in 2009, Balazard and Velásquez-
Castañón [1] proved that

lim
n!1

a�n(z)

n
= � log 2. (5)

Then, since limn!1(n + a) log
�
1 + 1

n

�
= 1 for any a 2 R, our result (2),

�rstly, con�rms that the estimate computationally obtained by Borwein et al.
is asymptotically valid. Second, our estimate (2) implies in particular the above
relation (5) due to Balazard and Velásquez Castañón.
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The upper bound b�n(z), de�ned in (1), was estimated by means of the
formula

b�n(z) = 1 +

�
4

�
� 1 + o(1)

�
log log n

log n
, n � 3, (6)

by H.L. Montgomery and R.C. Vaughan [5] in 2001 by completing a previous
work of Montgomery [4] in 1983. This last paper was decisive to demonstrate
that an important result of Turán [13] of 1948, where he had settled a connexion
between a particular distribution of the zeros of the partial sums near the line
x = 1 and the Riemann Hypothesis, was vacuous.
From (2)-(3) and (6), it is immediate that

lim
n!1

a�n(z) = �1, lim
n!1

b�n(z) = 1. (7)

Therefore, from (7) it follows that the widths, b�n(z) � a�n(z), of the critical
strips, that contain the zeros of the partial sums of the Riemann zeta function,
form a sequence satisfying

lim
n!1

�
b�n(z) � a�n(z)

�
=1.

b) As a consequence of the distribution of the prime numbers in the natural
series, we will deduce that the zeros of every �n(z) are situated in its corre-
sponding critical strip of a particular way with respect to the real part, at least
asymptotically. That is, in [8] we proved, by using the prime number theorem,
the existence of a positive integerN such that for any n, greater or equal thanN ,
the set of real parts of the zeros of �n(z) is dense in each interval

�
a�n(z); b�n(z)

�
.

It means that given an arbitrary line contained in the critical strip of �n(z), this
function possesses in�nitely many zeros arbitrarily close to that line, for every
n � N . Equivalently, for each n � N , any vertical strip of arbitrary width
contained in

�
a�n(z); b�n(z)

�
� R is a region which is not zero-free of �n(z).
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