JTN 2015 Universidad de Valladolid June 29-July 3, 2015

A space of weight 1 modular forms attached to totally real cubic number fields.

G. Mantilla-Soler

Universidad de los Andes, Bogotá, Colombia. g.mantilla691@uniandes.edu.co

The main goal of this talk is to exhibit a canonical subspace of a space of weight 1 modular forms that is parametrized by the set of isomorphism classes of cubic fields of a fixed fundamental discriminant. In case that the fields have ramification at infinity, the construction is well known. Here, using the theory of integral traces, I will show how to construct such a subspace for cubic fields with no ramification at infinity i.e., totally real cubic fields.

Let δ be a fundamental discriminant, and let \mathscr{C}_{δ} be the set of isomorphism classes of cubic number fields of discriminant δ . Recall that an integer is called *fundamental discriminant* if it is equal to the discriminant of a quadratic number field. Let *N* be a positive integer and let ε be a Dirichlet character modulo *N*. Let $\mathscr{M}_1(\Gamma_0(N), \varepsilon)$ be the space of weight 1 modular forms of level *N* and nebentypus ε . Suppose $\mathscr{C}_{\delta} \neq \emptyset$ and that $\delta < 0$, i.e. cubic fields with at least one complex place. Then, associated to each $K \in \mathscr{C}_{\delta}$ there is a weight 1 modular form

$$\mathfrak{f}_K \in \mathscr{M}_1\left(\Gamma_0(|\boldsymbol{\delta}|), \left(\frac{\boldsymbol{\delta}}{\cdot}\right)\right)$$

such that:

- 1. the map $K \mapsto \mathfrak{f}_K$ is injective.
- 2. the set $\{\mathfrak{f}_K : K \in \mathscr{C}_{\delta}\}$ is a linearly independent subset of $\mathscr{M}_1\left(\Gamma_0(|\delta|), \left(\frac{\delta}{\cdot}\right)\right)$.

The above follows from a particular case of Weil-Langlands converse theorem. If instead of considering cubic fields ramified at infinity we consider totally real cubic fields, then it is not possible to apply Weil-Langlands to produce modular forms. The point is that in the totally real case the Galois representations involved are even.

Let *L* be a cubic number field with discriminant $\delta < 0$, which is fundamental, and let \tilde{L} be its Galois closure.

By identifying S_3 with $\operatorname{Gal}(\widetilde{L}/\mathbb{Q})$, and considering the irreducible 2-dimensional representation of S_3 , one obtains an irreducible dihedral representation of $\rho_L : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$. Such a representation is induced by a non-trivial representation of H. Since d is a fundamental discriminat \widetilde{L} is contained in the Hilbert class field of $\mathbb{Q}(\sqrt{\delta})$. Thus, by the conductor formula for induced representations, we have that ρ_L has conductor $|\delta|$. From the above diagram we see that $\det(\rho_L)$ is the inflation of the non-trivial character of $\operatorname{Gal}(\mathbb{Q}(\sqrt{\delta})/\mathbb{Q})$. In other words, for all primes p not dividing d we have that $\det(\rho_L(\operatorname{Frob}_p)) = \left(\frac{\delta}{p}\right)$. In particular, ρ_L is an odd representation. Let $L(s,\rho_L) = \sum_{n=1} \frac{a_n}{n^s}$ be the Artin L-series attached to ρ_L and let $\mathfrak{f}_L = \sum_{n=1} a_n q^n$ be the q-expansion of $L(s,\rho_L)$. It follows from the theory of Theta series that

$$\mathfrak{f}_L \in \mathscr{M}_1\left(\Gamma_0(|\boldsymbol{\delta}|), \left(\frac{\boldsymbol{\delta}}{\cdot}\right)\right).$$

Moreover, each f_L is a normalized cuspidal eigenform.

Theorem 0.1. *The following is injective:*

$$egin{array}{rcl} \Phi \colon & \mathscr{C}_{oldsymbol{\delta}} & o & \mathscr{M}_1\left(\Gamma_0(|oldsymbol{\delta}|), \left(rac{\delta}{\cdot}
ight)
ight) \ & L & \mapsto & \mathfrak{f}_L \end{array}$$

In this talk we explain how to, for totally real cubic fields of fundamental discriminant, give an alternative construction of weight 1 modular forms satisfying properties (1) and (2) above. The main result to be explained in the talk is: Given *K* a cubic field with positive fundamental discriminant *d* there is a number d_3 , depending only on *d*, and weight 1 modular form $\Theta(K) := f_K$ such that

Theorem 0.2. Let d be a positive fundamental discriminant, and suppose that $\mathcal{C}_d \neq \emptyset$. Then,

$$\Theta: \ \ \mathcal{C}_d \ \ \rightarrow \ \ \mathcal{M}_1\left(\Gamma_0(|d_3|), \left(\frac{d_3}{\cdot}\right)\right) \\ K \ \ \mapsto \ \ f_K$$

is injective.