Torsion of rational elliptic curve over number fields

Enrique González-Jiménez¹, Filip Najman², José M. Tornero³

¹ Universidad Autónoma de Madrid, Spain, enrique.gonzalez.jimenez@uam.es

² University of Zagreb, Croatia, fnajman@math.hr

³ Universidad de Sevilla, Spain, tornero@us.es

Let *E* be an elliptic curve defined over a number field *K*. The Mordell-Weil Theorem states that the set of *K*-rational points, E(K), is a finitely generated abelian group. So it can be written as $E(K) \simeq E(K)_{\text{tors}} \oplus \mathbb{Z}^r$, for some non-negative integer *r* (rank of *E*) and some finite torsion subgroup $E(K)_{\text{tors}}$. It is well known that there exist two positive integers *n*, *m* such that $E(K)_{\text{tors}}$ is isomorphic to $\mathcal{C}_n \times \mathcal{C}_m$, where \mathcal{C}_n be the cyclic group of order *n*

Let d be a positive integer. The set $\Phi(d)$ of possible torsion structures of elliptic curves defined over number fields of degree d has been deeply studied by several authors. The case d = 1 was obtained by Mazur [6, 7]:

 $\Phi(1) = \{\mathscr{C}_n \mid n = 1, \dots, 10, 12\} \cup \{\mathscr{C}_2 \times \mathscr{C}_{2m} \mid m = 1, \dots, 4\}.$

The case d = 2 was completed by Kamienny [4] and Kenku and Momose [5]. There are not any other cases where $\Phi(d)$ has been completely determined.

Najman [8] has extended this study to the set $\Phi_{\mathbb{Q}}(d)$ of possible torsion structures over a number field of degree d of an elliptic curve defined over \mathbb{Q} . He has obtained a complete description of $\Phi_{\mathbb{Q}}(2)$ and $\Phi_{\mathbb{Q}}(3)$.

The objectives of this talk is to show recent results in this direction. Fix a possible torsion structure over \mathbb{Q} , say $G \in \Phi(1)$. We will study the sets:

- $\Phi_{\mathbb{Q}}(d,G)$ of possible groups that can appear as the torsion subgroup over any number field of degree *d*, of an elliptic curve *E* defined over the rationals, such that $E(\mathbb{Q})_{\text{tors}} = G$.
- $\mathscr{H}_{\mathbb{Q}}(d,G) = \{S_1,...,S_n\}$ where, for any i = 1,...,n, $S_i = [H_1,...,H_m]$ is a list, with $H_i \in \Phi_{\mathbb{Q}}(d,G) \setminus \{G\}$, and there exists an elliptic curve E_i defined over \mathbb{Q} such that:
 - $E_i(\mathbb{Q})_{tors} = G.$
 - There are number fields $K_1, ..., K_m$ (non-isomorphic pairwise) of degree d with $E_i(K_j)_{tors} = H_j$, for all j = 1, ..., m.

We give a complete description of the sets $\Phi_{\mathbb{Q}}(d, G)$ and $\mathscr{H}_{\mathbb{Q}}(d, G)$ for any $G \in \Phi(1)$ and d = 2 or d = 3.

References

- E. González–Jiménez, J.M. Tornero, *Torsion of rational elliptic curves over quadratic fields*, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108, pp. 923–934 (2014).
- [2] E. González–Jiménez, J.M. Tornero, Torsion of rational elliptic curves over quadratic fields II. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, to appear. arXiv: 1411.3468.
- [3] E. González–Jiménez, F. Najman, J.M. Tornero, *Torsion of rational elliptic curves over cubic fields*, Rocky Mountain Journal of Mathematica, to appear. arXiv: 1411.3467.
- [4] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992) 129–133.
- [5] M.A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988) 125–149.
- [6] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études. Sci. 47 (1977) 33–186.
- [7] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978) 129-162.
- [8] F. Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett., to appear.