Torsion of rational elliptic curve over number fields

Enrique González-Jiménez ${ }^{1}$, Filip Najman ${ }^{2}$, José M. Tornero ${ }^{3}$
${ }^{1}$ Universidad Autónoma de Madrid, Spain, enrique.gonzalez.jimenez@uam.es
${ }^{2}$ University of Zagreb, Croatia, fnajman@math.hr
${ }^{3}$ Universidad de Sevilla, Spain, tornero@us.es

Let E be an elliptic curve defined over a number field K. The Mordell-Weil Theorem states that the set of K-rational points, $E(K)$, is a finitely generated abelian group. So it can be written as $E(K) \simeq E(K)_{\text {tors }} \oplus \mathbb{Z}^{r}$, for some non-negative integer r (rank of E) and some finite torsion $\operatorname{subgroup} E(K)_{\text {tors. }}$. It is well known that there exist two positive integers n, m such that $E(K)_{\text {tors }}$ is isomorphic to $\mathscr{C}_{n} \times \mathscr{C}_{m}$, where \mathscr{C}_{n} be the cyclic group of order n

Let d be a positive integer. The set $\Phi(d)$ of possible torsion structures of elliptic curves defined over number fields of degree d has been deeply studied by several authors. The case $d=1$ was obtained by Mazur [6, 7]:

$$
\Phi(1)=\left\{\mathscr{C}_{n} \mid n=1, \ldots, 10,12\right\} \cup\left\{\mathscr{C}_{2} \times \mathscr{C}_{2 m} \mid m=1, \ldots, 4\right\}
$$

The case $d=2$ was completed by Kamienny [4] and Kenku and Momose [5]. There are not any other cases where $\Phi(d)$ has been completely determined.

Najman [8] has extended this study to the set $\Phi_{\mathbb{Q}}(d)$ of possible torsion structures over a number field of degree d of an elliptic curve defined over \mathbb{Q}. He has obtained a complete description of $\Phi_{\mathbb{Q}}(2)$ and $\Phi_{\mathbb{Q}}(3)$.

The objectives of this talk is to show recent results in this direction. Fix a possible torsion structure over \mathbb{Q}, say $G \in \Phi(1)$. We will study the sets:

- $\Phi_{\mathbb{Q}}(d, G)$ of possible groups that can appear as the torsion subgroup over any number field of degree d, of an elliptic curve E defined over the rationals, such that $E(\mathbb{Q})_{\text {tors }}=G$.
- $\mathscr{H}_{\mathbb{Q}}(d, G)=\left\{S_{1}, \ldots, S_{n}\right\}$ where, for any $i=1, \ldots, n, S_{i}=\left[H_{1}, \ldots, H_{m}\right]$ is a list, with $H_{i} \in \Phi_{\mathbb{Q}}(d, G) \backslash\{G\}$, and there exists an elliptic curve E_{i} defined over \mathbb{Q} such that:
- $E_{i}(\mathbb{Q})_{\text {tors }}=G$.
- There are number fields K_{1}, \ldots, K_{m} (non-isomorphic pairwise) of degree d with $E_{i}\left(K_{j}\right)_{t o r s}=H_{j}$, for all $j=1, \ldots, m$.

We give a complete description of the sets $\Phi_{\mathbb{Q}}(d, G)$ and $\mathscr{H}_{\mathbb{Q}}(d, G)$ for any $G \in \Phi(1)$ and $d=2$ or $d=3$.

References

[1] E. González-Jiménez, J.M. Tornero, Torsion of rational elliptic curves over quadratic fields, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108, pp. 923-934 (2014).
[2] E. González-Jiménez, J.M. Tornero, Torsion of rational elliptic curves over quadratic fields II. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, to appear. arXiv: 1411.3468.
[3] E. González-Jiménez, F. Najman, J.M. Tornero, Torsion of rational elliptic curves over cubic fields, Rocky Mountain Journal of Mathematica, to appear. arXiv: 1411.3467.
[4] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992) 129-133.
[5] M.A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988) 125-149.
[6] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études. Sci. 47 (1977) 33-186.
[7] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978) 129-162.
[8] F. Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_{1}(n)$. Math. Res. Lett., to appear.

