JTN 2015 Universidad de Valladolid June 29-July 3, 2015

An analog of Ferrero-Washtington theorem over the Carlitz-cyclotomic extension

B. Anglès¹, A. Bandini², <u>F. Bars</u>³, I. Longhi⁴

¹ LMNO, Université de Caen, France, bruno.angles@unicaen.fr

² Università degli Studi di Parma, Italy, andrea.bandini@unipr.it

³ Universitat Autònoma de Barcelona, francesc@mat.uab.cat

⁴ Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China, Ignazio.Longhi@xjtlu.edu.cn

Ferrero-Washington theorem [3] is one of the most famous results on classical cyclotomic Iwasawa theory over \mathbb{Q} . In the talk we will briefly sketch how one deduces an analog of Ferrero-Washington theorem in the commutative "cyclotomic à la Carlitz" non-noetherian Iwasawa theory over $\mathbb{F}_q(T)$ (the rational fields over a finite field \mathbb{F}_q) from the Iwasawa Main Conjecture proved in the above setting in [1], the above result is also quoted as an application of the Iwasawa main conjecture in [1].

Let us first recall the classical result of Ferrero-Washington, but we follow an approach which is not the usual one (for the usual presentation we refer to [5, Chapter 7]).

We are interested for the following module of class groups:

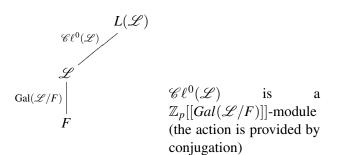
take *F* a global field (i.e. a finite extension of $\mathbb{F}_q(T)$ be the rational function field of characteristic *p* with constant field the finite field \mathbb{F}_q or \mathbb{Q}) and E/F a finite extension

- $\mathscr{C}\ell^0(E)$ the *p*-part of the group of divisor classes of *E* of degree 0 (or *p*-part of the class group);
- L(E) the maximal unramified abelian *p*-extension of *E*;
- $\mathscr{C}\ell^0(E) \simeq \operatorname{Gal}(L(E)/E)$ via the (canonical) Artin map.
- $\mathscr{C}\ell^0(E)$ is a $\mathbb{Z}_p[\operatorname{Gal}(E/F)]$ -module, the action is provided by conjugation.

Same notations for infinite extensions \mathscr{L}/F where

$$\mathscr{C}\ell^0(\mathscr{L}) := \lim_{\stackrel{\longleftarrow}{E}} \mathscr{C}\ell^0(E)$$

(the limit is on the natural norm maps as *E* runs among the finite subextensions of \mathscr{L}/F) and becomes an $\mathbb{Z}_p[[Gal(\mathscr{L}/F)]] = \lim_{\substack{\leftarrow \\ F \subset E\mathscr{L}}} \mathbb{Z}_p[Gal(E/F)]$ -module.



Suppose that $Gal(\mathscr{L}/F)$ is abelian and E/F finite abelian extension with $Gal(\mathscr{L}/E) \cong \mathbb{Z}_p^d$ (and \mathscr{L}/F ramified in a finite set of places) then by theorems of Iwasawa, Greenberg, and many others, we know that

 $\mathscr{C}\ell^0(\mathscr{L})$ is a torsion finitely generated $\mathbb{Z}_p[[Gal(\mathscr{L}/F)]] - module$.

We are interested in understanding such finitely generated torsion module and for particular reasons we will be interested in χ -components of the above modules where χ is a *p*-adic character of Gal(E/F).

Let us now restrict to the initial case concerning Ferrero-Washington theorem.

Let us consider $\mathbb{Q}_n = \mathbb{Q}(\zeta_{p^n})$ where ζ_{p^n} is a primitive p^n -th root of unity, and consider what is called the cyclotomic extension $\mathbb{Q}_{cyc}/\mathbb{Q}$ with $\mathbb{Q}_{cyc} = \bigcup_{n \ge 1} \mathbb{Q}_n$, observe that $\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \times \mathbb{Z}_p$, and denote Γ by $\operatorname{Gal}(\mathbb{Q}_{cyc}/\mathbb{Q}_1) \cong \mathbb{Z}_p$ in the number field setting.

Consider a *p*-adic Dirichlet character $\chi : \operatorname{Gal}(\mathbb{Q}_1/\mathbb{Q}) \to \overline{\mathbb{Q}_p}^*$ and by $\mathscr{O}_{\chi} \subset \overline{\mathbb{Q}_p}$ we mean the ring extension of \mathbb{Z}_p generated by the values of χ , where as usual \mathbb{Q}_p are the *p*-adic numbers and \mathbb{C}_p will denote the completion of $\overline{\mathbb{Q}_p}$.

For any \mathbb{Z}_p -module U which admits a continuous action of $\operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q})$, the χ -part of U is the $\mathscr{O}_{\chi}[[\Gamma]]$ -module obtained by:

$$U(\boldsymbol{\chi}) := e_{\boldsymbol{\chi}} U$$

where $e_{\chi} = \frac{1}{|\operatorname{Gal}(\mathbb{Q}_1/\mathbb{Q})|} \sum_{\delta \in \operatorname{Gal}(\mathbb{Q}_1/\mathbb{Q})} \chi(\delta^{-1}) \delta$.

In particular $\mathscr{C}\ell^0(\mathbb{Q}_{cyc})(\chi)$ is a $\mathscr{O}_{\chi}[[\Gamma]]$ -module which is torsion and finitely generated.

Recall that we have a non-canonical isomorphism:

$$\sigma_{\gamma} \colon \mathscr{O}_{\chi}[[\Gamma]] o \Lambda_{\chi} := \mathscr{O}_{\chi}[[T]]$$

mapping γ (a topological generator of Γ) to 1 + T, latter on we will fix this choice.

Denote by Λ_{χ} the Iwasawa module $\mathscr{O}_{\chi}[[\Gamma]]$.

Recall the following statements on the theory of finitely generated Λ_{χ} -modules:

- 1. M, N are Λ_{χ} -pseudo-isomorphic if exists a Λ_{χ} -homomorphism from M to N with finite kernel and cokernel. We write $M \sim N$ if they are Λ_{χ} -pseudo-null, which is an equivalence relation for Λ_{χ} -torsion modules.
- 2. *M* a Λ_{χ} -torsion, then

$$M \sim \oplus_{i=1}^r \Lambda_{\chi}/(h_i)$$

for some natural *r* where each $h_i \in \Lambda_{\chi}$. The invariant

$$(h_1 \cdots h_r) = Char_{\Lambda_{\gamma}}(M)$$

is named the characteristic ideal of the Λ_{χ} -module *M*.

Recall that for any $\alpha \in \Lambda_{\chi}$, we can write

$$\alpha = \pi^{\mu} h(T) v(T)$$

where π is an uniformizer of \mathscr{O}_{χ} , h(T) a distinguished polynomial of degree λ (i.e. the reduction of h(T) in $\Lambda_{\chi}/(p)$ is T^{λ}), and v(T) a unit of Λ_{χ} .

For $Char_{\Lambda_{\chi}}(M) = (\alpha)$ with α as above, the number $\mu \in \mathbb{N}$ is called the μ -invariant of M, and $\lambda = degree_T(h(T))$ is named the λ -invariant of M.

For any character $\chi = \omega^i$ (*i* even and nonzero and ω the Teichmüller character) associated to $\text{Gal}(\mathbb{Q}_1/\mathbb{Q})$ Iwasawa defined *p*-adic analogues $L_p(s, \omega^i)$ of the Dirichlet *L*-series $L(s, \omega^i)$ with interpolation property:

$$L_p(1-m,\omega^i) = (1-\omega^{i-m}(p)p^{m-1})L(1-m,\omega^{i-m}) \text{ for } m \ge 1$$

Moreover Iwasawa proved that there exist a power series $f(T, \omega^i) \in \mathbb{Z}_p[[T]] \simeq \Lambda_{\chi}$ such that $L_p(s, \omega^i) = f((1 + p)^s - 1, \omega^i)$.

Conjecture 1 (Main Conjecture (MC)) With *i* even and non-zero, let $\mathscr{C}\ell^0(\mathbb{Q}_{cyc})(\omega^i)$ be the ω^i -part of the Iwa-sawa module, then

$$Ch_{\Lambda_{\chi}}(\mathscr{C}\ell^{0}(\mathbb{Q}_{cyc})(\boldsymbol{\omega}^{i})) = (f(T,\boldsymbol{\omega}^{1-i}))$$

Mazur-Wiles in [4] proved the above Main Conjecture (also in a more general result). Different proofs and many generalizations have been investigated since then.

By the above result of Mazur-Wiles we can formulate the result of Ferrero-Washington in [3] as follows:

Theorem 2 (Ferrero-Washington) With the hypothesis of the previous theorem, the power series $f(T, \omega^{1-i})$ satisfies that, $f(T, \omega^{1-i}) \not\equiv 0 \pmod{p}$.

The usual formulation of Ferrero-Washington theorem claims that the μ -invariant associated to the characteristic ideal of the module $\mathscr{C}\ell^0(\mathbb{Q}_{cyc})$ is zero as $\mathbb{Z}_p[[Gal(\mathbb{Q}_{cyc}/\mathbb{Q})]]$ -torsion module.

Now let us consider the "cyclotomic Carlitz" extension.

Let $F := \mathbb{F}_q(\theta)$ be the rational function field of characteristic p and fix $\frac{1}{\theta}$ as the prime at ∞ . Let Φ be the Carlitz module associated with $A := \mathbb{F}_q[\theta]$ and fix a prime \mathfrak{p} of A. For any $n \ge 0$ let $\Phi[\mathfrak{p}^n]$ be the \mathfrak{p}^n -torsion of the Carlitz module and $F_n := F(\Phi[\mathfrak{p}^{n+1}])$. We define the \mathfrak{p} -cyclotomic extension of F as $\mathscr{F} := \bigcup F_n$: it is a Galois extension with $\operatorname{Gal}(\mathscr{F}/F_0) := \Gamma \simeq \mathbb{Z}_p^{\infty}$. Let $\mathscr{C}\ell_n$ be the p-part of the group of divisor classes of degree zero of F_n and put $\mathscr{C}\ell^0(\mathscr{F})$ as the inverse limit (on the natural norm maps) of the $\mathscr{C}\ell_n$. We study $\mathscr{C}\ell^0(\mathscr{F})$ as a module over the non-noetherian Iwasawa algebra $\mathbb{Z}_p[\operatorname{Gal}(F_0/F)][[\Gamma]].$

Consider χ a character of $Gal(F_0/F)$ which has values on $W \cong \mathbb{Z}_p[\mu_{q^d-1}]$ we study next $\mathscr{C}\ell^0(\mathscr{F})(\chi)$ as $W[[\Gamma]]$ -module.

We prove in [1]

Proposition 3 (Anglès-Bandini-B.-Longhi) For χ non-trivial then the Iwasawa module $\mathscr{C}\ell^0\mathscr{F}(\chi)$ is a finitely generated torsion $W[[\Gamma]]$ -module.

In such Iwasawa algebras we do not have a natural characteristic element, also it is not known yet a structure theorem, but we can deal with Fitting ideals instead of Characteristic ideals (see [2] for an approach on defining some sort of pro-Characteristic ideal by use some filtration that may be useful in the future with the use of Waldhausen categories in the formulation of Iwasawa Main Conjectures).

Let now Λ_{χ} any Iwasawa algebra, for example $W[[\Gamma]]$.

Definition 4 Let Z be a finitely generated Λ_{χ} -module and let

$$\Lambda^a_{\boldsymbol{\chi}} \to^{\boldsymbol{\psi}} \Lambda^b_{\boldsymbol{\chi}} \twoheadrightarrow Z$$

be a presentation, where the map ψ can be represented by an $a \times b$ -matrix Φ_Z with entries in Λ_{χ} .

In this setting, the Fitting ideal of Z is the ideal generated by all the determinants of the $b \times b$ -minors of Φ_Z if $a \ge b$ and otherwise is the zero ideal. We denote this ideal by $Fitt_{\Lambda_{\chi}}(Z)$.

There are a lot of results concerning Fitting ideals (which usually is not a principal ideal) versus Characteristic ideals, in particular if the module has projective dimension one both concepts coincide and a lot of technical results.

The main result concerning IMC in [1] reads as follows:

Theorem 5 (Anglès-Bandini-B.-Longhi) For χ a non-trivial p-adic character of $Gal(F_0/F)$ we have:

$$\operatorname{Fitt}_{W[[\Gamma]]}(\mathscr{C}\ell^0(\mathscr{F})(\boldsymbol{\chi})) = (\lim_{\stackrel{\leftarrow}{n}} \Theta_n^{\#}(1,\boldsymbol{\chi})) =: (\Theta_{\infty}^{\#}(1,\boldsymbol{\chi}))$$

with

$$\Theta_n^{\#}(1,\chi) := \begin{cases} \Theta_n(1,\chi) & \text{if } \chi \text{ is odd} \\ \\ \frac{\Theta_n(X,\chi)}{1-X}|_{X=1} & \text{if } \chi \text{ is even} \end{cases}$$

where $\Theta_n(X, \chi)$ are χ -component of the usual Stickelberger series defined of $G_n = \text{Gal}(F_n/F)$ by

$$\Theta_n(X) := \Theta_{n,S=\{\mathfrak{p},\infty\}}(X) = \prod_{\nu \notin S} (1 - \operatorname{Fr}_{\nu}^{-1} X^{d_{\nu}})^{-1} \in \mathbb{Z}[G_n][[X]]$$

with $d_v := \deg(v)$ and Fr_v (lifting of) the Frobenius of v in $\operatorname{Gal}(F_n/F)$. Here χ is even if $\chi(\mathbb{F}_q^*) = 1$ and odd otherwise.

As a consequence of the above theorem on Iwasawa main conjecture we obtain in [1] the following:

Theorem 6 (An analog of Ferrero-Washington in [1]) For χ a non-trivial character of $Gal(F_0/F)$ we have:

$$\Theta_{\infty}^{\#}(1,\chi) \not\equiv 0 \pmod{p}$$

In the talk we will explain briefly the ingredients to deduce the above analog of Ferrero-Washington theorem from the core theorem 5 concerning Iwasawa Main Conjecture for the Carlitz cyclotomic extension.

References

- [1] B. Anglès A. Bandini F. Bars I. Longhi, Iwasawa Main Conjecture for the Carlitz cyclotomic extension and applications, arXiv:1412.5957v2, april 2015.
- [2] A. Bandini F. Bars I. Longhi, Characteristic ideals and Iwasawa theory, New York Journal of Mathematics, vol. 20 (2014), 759-778.
- [3] B. Ferrero and L.C.Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Annals of Mathematics. Second Series 109 (2) 377–395 (1979).
- [4] B.Mazur and A.Wiles, *Class fields of abelian extensions of* Q, Inventiones math. **76** (1984), 179–330.
- [5] L.C. Washington, Introduction to cyclotomic fields Second edition, GTM 83, Springer-Verlag, New York, 1997.