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Abstract

We compute the Feng-Rao distance of a code coming from an order
domain with a simplicial value semigroup. The main tool is the Apéry set
of a semigroup that can be computed using a Gröbner basis.

1 Introduction

An important family of error correcting codes is the Algebraic-Geometry Codes
introduced by Goppa. In 1982 Tsfasman, Vlăduţ and Zink constructed a se-
quence of error correcting codes whose parameters exceed the Gilbert-Varshamov
bound. In 1993 Feng and Rao presented the majority voting test that corrects
up to the Feng-Rao distance for a class of AG codes, the one-point AG-codes
[8]. Campillo and Farrán used the Apéry set of a semigroup in N0 to compute
the Feng-Rao distance of the one point codes [2], i.e. for semigroups in N0.

The one-point AG-codes can be extended to a new family, the evaluation
codes and their duals using order or weight functions that take values in N0 [8].
This new construction has an easier description and it seemed more general,
but in fact the two families are equal [10].

An important improvement of the evaluation codes consists of considering
weight functions with values in a finitely generated semigroup Γ of Nr0. This
new class of codes contains also the one-point codes and the Feng-Rao algorithm
extend in a natural way to a suitable class of codes [12, 9] in this more general
setting where one can consider for instance toric rings. Weight functions can be
constructed from order domains and give rise to the so called codes from order
domains [5, 6].

For a code coming from an order domain Cλ one has the Feng-Rao distances,
that are lower bounds for the minimum distance d(Cλ) ≥ dϕ(λ) ≥ d(λ). The
bound d(λ) depends only on the semigroup Γ ⊂ Nr0.

The computation of the Feng-Rao distances involves the computation of the
numbers µλ for a infinite set of λ’s, λ ∈ Γ. In this paper we compute d(λ) for
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simplicial semigroups in Nr0, for every r. Geil reduces the computation of dϕ(λ)
to the computation of a finite set of µλ’s [5], where µλ is computed directly
from the definition. In this paper we compute µλ in a more effective way for
simplicial semigroups using the Apéry set of the semigroup.

The Apéry set is obtained in [13] by computing a Gröbner basis with respect
to the negative lexicographical ordering (ls in Singular). If we fix a mono-
mial order in a semigroup Γ, the Apéry set of Γ relative to the generators of
the extremal rays allows us to write its elements in a unique way as a linear
combination of the elements of the semigroup and the generators of the extremal
rays of the cone. In this work we use this way of representing the elements of
the semigroup to compute µλ and d(λ), λ ∈ Γ, for simplicial semigroups. The
algorithms have been implemented in the computer algebra system Singular
[7].

2 Codes coming from order domains

In this section we introduce the weight functions with values in a semigroup of
Nr0, the order domains and the codes coming from order domains. The results
of this section are from [5, 6]. We use definitions and results of Gröbner basis
theory, all taken from [4].

Definition 2.1. Let Γ ⊆ Nr0 be a finitely generated semigroup and consider a
monomial ordering <Nr0

in Nr0. We extend the semigroup Γ, to Γ−∞ = Γ∪{−∞}.
Let F be a finite field and I ⊂ F[X1, . . . , Xm] be a prime ideal. A map ρ :
F[X1, . . . , Xm]/I → Γ−∞ is said to be a (finitely generated) weight function,
if it is surjective and it satisfies the following conditions:

(0) ρ(f) = −∞ if and only if f = 0
(1) ρ(cf) = ρ(f) for all nonzero c ∈ F
(2) ρ(f + g) ≤Nr0

max<Nr0
{ρ(f), ρ(g)}

(3) If ρ(f) = ρ(g) 6= −∞, then there exists a nonzero c ∈ F such that
ρ(f − cg) <Nr0

ρ(g)

(4) ρ(fg) = ρ(f) + ρ(g)

for all f, g ∈ F[X1, . . . , Xm]/I.
In the case that a weight function ρ exists, then F[X1, . . . , Xm]/I is called

an order domain over F and Γ is called the value semigroup of ρ.

In [6] a weight function is a surjective map from an F-algebra R to a well
ordered semigroup Γ such that conditions (0) to (4) are satisfied. That seems
to be more general but whenever the semigroup Γ is finitely generated, then
up to isomorphism R is of the previous form. Therefore the definition 2.1
describes all possible weight functions with finitely generated value semigroup.
By [6, Corollary 5.7] we can assume that r in the definition 2.1 is equal to the
transcendence degree of Quot(F[X1, . . . , Xm]/I).
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In the following we use the notation β = (β1, . . . , βr) ∈ Nr0. In order to
characterize the order domains we need some terminology. Let us consider
weights w(Xi) ∈ Nr0 \ {0} for i = 1, . . . ,m. The weight of a monomial in
F[X1, . . . , Xm] is then w(Xα) =

∑m
i=1 αiw(Xi).

Given the inner ordering <Nr0
on Γ, a weight w and another monomial or-

dering <M one define the generalized weighted degree ordering <w on the
monomials of F[X1, . . . , Xm] as Xα <w Xβ if and only if

(1) w(Xα) <Nr0
w(Xβ) or

(2) w(Xα) = w(Xβ) and Xα <M Xβ

Let ∆(I) be the footprint of I, i.e. the monomials that are not the leading
monomial of any polynomial in I with respect to <w. The following result
[5, Theorem 1] characterizes the order domains and gives a construction of its
weight function.

Theorem 2.2. Let R = F[X1, . . . , Xm]/I, let G be a Gröbner basis of the
ideal I with respect to <w. Suppose that the elements of its footprint ∆(I)
have mutually distinct weights, and that every element of G has exactly two
monomials of highest weight in its support. We consider the following finitely
generated semigroup Γ = 〈w(Xα) | Xα ∈ ∆(I)〉.

Let F be the remainder of f ∈ R after division by G. Then R is an order
domain with weight function ρ defined by:

ρ : R → Γ−∞
f 7→ max<Nr0

{w(Xα) | Xα ∈ Supp(F )} for f 6= 0

0 7→ −∞

Moreover: if R is an order domain with a weight function with finitely gen-
erated value semigroup, then R can be described by the above construction.

A subset B ⊂ R of an order domain with weight function ρ is called an
order basis if ρ restricted to B is a bijection. The set Bρ = {fλ | λ ∈ Γ}
totally ordered by <Nr0

is called a well-behaving basis for R. The order basis

is a basis for R as a vector space over F.
We define the codes from order domains, they are nothing other than eval-

uation codes as in [8] except that the weight function ρ now takes values at
Nr0.

Definition 2.3. We consider an order domain R = F[X1, . . . , Xm]/I with
weight function ρ : R → Γ−∞, where Γ is ordered by <Nr0

. Assume that a

surjective morphism of F-algebras ϕ : R → Fn is given. Let {fλ | λ ∈ Γ} be a
well-behaving basis for R. For λ ∈ Γ the evaluation code Eλ is defined

Eλ = 〈ϕ(fλ′) | λ′ ≤Nr0
λ〉 = 〈ϕ(f) | f ∈ R, ρ(f) ≤Nr0

λ〉

and its dual denoted by Cλ is

Cλ = {c ∈ Fn | c · ϕ(fλ′) = 0, ∀ λ′ ≤Nr0
λ}
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Where · is the inner product. The definition does not depend on the choice of
the basis.

Also, one can extend the definition of the Feng-Rao distance for evaluation
codes, also called order bounds. We redefine them for semigroups in Nr0.

Definition 2.4. Given λ ∈ Γ we define:

Nλ = {(λ1,λ2) ∈ Γ2 | λ1 + λ2 = λ}, µλ = #Nλ

and the Feng-Rao distances

d(λ) = min{µη | λ <Nr0
η}

dϕ(λ) = min{µη | λ <Nr0
η, Cη′ 6= Cη ∀ η′ <Nr0

η}

The Feng-Rao distances are lower bounds for the minimal distance, namely

d(Cλ) ≥ dϕ(λ) ≥ d(λ)

The bound d(λ) depends only on Γ. However dϕ(λ) also depends on the
morphism ϕ. A strategy to obtain codes with good parameters may be to look
for semigroups Γ with d(λ) as large as possible and then look for an order
domain that has Γ as its semigroups of values or modify the morphism ϕ in
order to obtain families of codes with dϕ(λ) as large as possible. That will
probable allow us to correct more errors.

3 Feng-Rao distances

We first introduce the Apéry set of a semigroup which is our main tool in this
work. Then we compute µλ and d(λ) for a simplicial semigroup.

For the definitions and results of semigroup theory we refer to [3, 13] (and
their references). All the results of semigroup theory in this section are valid
for a cancellative finitely generated commutative semigroup Γ that has a zero
element and Γ ∩ (−Γ) = (0), in particular for a value semigroup Γ ⊂ Nr0 of a
weight function. Now we introduce the Apéry set which was introduced in [1]
in order to study numerical semigroups of curve singularities.

Let Γ = 〈Λ〉 = 〈λ1, . . . ,λn〉 be a finitely generated semigroup, take a fixed
partition Λ = E ∪A, E ∩A = ∅, of the set of generators Λ. The Apéry set Q
of Γ relative to E is defined to be

Q = {q ∈ Γ | q − e /∈ Γ, ∀ e ∈ E}

One can write λ ∈ Γ as the sum of an element of Q and a linear combination
of the elements of E. Therefore Γ = 〈E ∪Q〉.

Let F[Γ] be the semigroup F-algebra, F[Γ] =
⊕
λ∈Γ Fχλ (where χλχλ

′
=

χλ+λ′
). The ideal of Γ relative to Λ, denoted by J , is ker(ϕ0), where ϕ0 is

the F-algebra morphism
ϕ0 : F[X]→ F[Γ]
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defined by ϕ0(Xi) = χλi . ϕ0 is surjective, and hence F[Γ] ' F[X]/ ker(ϕ0).
Consider F[Γ] with the natural Γ-grading and F[X] as a Γ-graded ring, assigning
degree λi to Xi. J is graded because ϕ0 is a Γ-graded morphism of degree zero.

Let CΓ be the cone generated by Γ, then CΓ is strongly convex. The semi-
group Γ is called simplicial if the the number of extremal rays of CΓ is equals
to the dimension of F[Γ]. In particular any semigroup of dimension 1 and 2 is
simplicial.

Let Γ = 〈E,A〉 ⊂ Nr0, where E = {λ1, . . . ,λf} is the set of the generators of
the extremal rays and A = {λf+1, . . . ,λn} (if f = r then Γ is simplicial). Let
F[XE ] be the polynomial ring in the r indeterminates associated with E and let
F[XA] be the polynomial ring in the n − f indeterminates associated with A.
Consider the local ordering lex-inf (ls in Singular) in F[X] = F[XE ,XA]

Xα >lex - inf Xβ ⇐⇒ Xα <lex Xβ

where lex is the lexicographic order with X1 > · · · > Xn.
This ordering is not a monomial ordering. However, since there exists only

a finite number of monomials of Γ-degree λ ∈ Γ, a Gröbner basis of J can
be computed from any Γ-graded generating set of J . The time complexity of
computing a Gröbner basis is exponential in terms of the number of variables
and this makes it impossible to achieve some computations involving a Gröbner
basis. But J is a toric ideal [11], and one has that any reduced Gröbner basis
of a toric ideal can be computed in polynomial time [11, Theorem 12.24].

Assume that G is the reduced Gröbner basis of J for lex-inf. Let ∆A be the
set of monomials Xα

A which are not divisible by any leading monomial of G, i.e.,
the footprint restricted to F[XA]. The Apéry set of a semigroup Γ = 〈E,A〉
with respect to E is computed in [13] as

Q = {λ ∈ Γ | λ =

n∑
i=f+1

αiλi, where Xα
A ∈ ∆A}

and in particular Q is finite.
For a simplicial semigroup Γ = 〈E,A〉, where E is the set of the generators

of the extremal rays, one has that the elements of E must be Q-linearly inde-
pendent. Therefore if E = {e1, . . . , er} we assume in the following without loss
of generality that ei is in the i-th axis, for i ∈ {1, . . . , r}, and we say in this case
that E is aligned with the coordinate axes. That is, if pri is the i-th projection
then pri(ei) 6= 0 and prj(ei) = 0, ∀ j 6= i.

For a semigroup where the generators of the extremal rays are not aligned
with the coordinate axes one can consider a Q-linear transformation, φ : Qr →
Qr, such that φ(λi) is in the i-th axis, and the associated matrix has nonzero
determinant (because they are linearly independent). Finally we multiply this
transformation by the least common multiple of the denominators of {φ(λi) | i ∈
{1, . . . , r}} (in order to have all the coordinates in Z).
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3.1 Computing µλ

Let Γ ⊂ Nr0 be a finitely generated semigroup of values of a weight function. Let
Q be the Apéry set of Γ relative to the generators of the extremal rays. Then
Γ = 〈E,Q〉 where E = {e1, . . . , er} is the set of generators of the extremal rays.
We assume that E is aligned with the coordinate axes.

Let η ∈ Γ, we denote by η the class of η in

M =
Z

(pr1(e1))

⊕
· · ·
⊕ Z

(prr(er))

Let Q be the Apéry set of Γ relative to E. If λ ∈ Γ, there exists q ∈ Q
(not unique) such that λ = q , and therefore one can write λ as the sum of
q and a linear combination of the elements of E. One has Γ as a (in general)
non-disjoint union

Γ =
⋃
q∈Q
{q + N0e1 + · · ·+ N0er}

We order the elements of the Apéry set with the same class by the lexicographical
ordering. We write

Q =
⋃
i∈I

{q1
i , . . . , q

ti
i }

where I = {q | q ∈ Q} and q1
i <lex · · · <lex q

ti
i .

Let λ ∈ Γ then there is a unique qcd ∈ Q called the Apéry element of λ
and a unique β = (β1, . . . , βr) ∈ Nr0 such that

λ = qcd +

r∑
k=1

βkek

with λ = qcd and @β′ ∈ Nr0 such that λ = qc
′

d +
∑
β′kek ∀ c′ < c.

Remark 3.1. If the simplicial semigroup Γ is Cohen-Macaulay then each
q ∈ Q has a different class in M and it is not necessary to order the elements
of Q. Therefore the computations for Cohen-Macaulay semigroups are much
simpler.

One has that µλ = #Nλ where Nλ = {(λ1,λ2) ∈ Γ2 | λ1 + λ2 = λ}. Let
(λ1,λ2) ∈ Nλ, λ = qcd +

∑
βkek, λ1 = qpi +

∑
γkek then λ2 = d− i. Set

j = d− i and let λ2 = qlj +
∑
δkek. We consider

N i,p,lλ = {(λ1,λ2) ∈ Γ2 | λ1 + λ2 = λ,λ1 = qpi +
∑

γkek,λ2 = qlj +
∑

δkek}

for i ∈ I, p ∈ {1, . . . , ti}, l ∈ {1, . . . , tj}. Therefore

µλ =
∑

i∈I,p=1,...,ti,l=1...,tj

#N i,p,lλ
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One has that λ1 + λ2 = λ ⇔
∑

(γk + δk)ek = λ− qpi − qlj so

γk + δk = prk(λ− qpi − q
l
j)/prk(ek) for all k

let Bk = prk(λ− qpi − qlj)/prk(ek)
We are interested in the case that Bk ≥ 0 ∀k (i.e.B = (B1, . . . , Br) ≥NAT

0)
because in the other case the equality λ1 + λ2 = λ is not possible. If p = l = 1
there are

∏r
k=1(Bk + 1) possible values for γ and δ and therefore #N i,1,1

λ =∏r
k=1(Bk + 1). But if k 6= 1 or l 6= 1 there are fewer pairs because some of them

should be written using another Apéry element and if we do not discard them
they would be counted several times.
λ1 and λ2 have Apéry element qpi and qlj if and only if{

qpi +
∑
γkek �NAT q

g
i , g = 1, . . . p− 1

qlj +
∑
δkek �NAT q

h
j , h = 1, . . . l − 1

Since qgi − q
p
i = 0 and qhj − qlj = 0 one has that there exist rg, sh ∈ Zr

such that qgi − q
p
i =

∑
rgkek for g = 1, . . . , p − 1 and qhj − qlj =

∑
shkek for

h = 1, . . . , l− 1. We are only interested in the case that rg, sh ⊂ Nr0 because in
the other case the equality λ1 + λ2 = λ is not possible.

Therefore one has {
γ �NAT r

g, g = 1, . . . , p− 1
δ �NAT s

h, h = 1, . . . , l − 1

And since γk + δk = Bk ∀ k one has equivalently{
γ �

NAT
rg, g = 1, . . . , p− 1

γ �
NAT

B − sh, h = 1, . . . , l − 1

For all possible pairs, X = {γ ∈ Nr0 | γ ≤NAT
B}, one has to discard the pairs

with Apéry element qgi , Yg = {γ ∈ X | γ ≥
NAT

rg} g = 1, . . . , p − 1, and with
Apéry element qhj , Y ′h = {γ ∈ X | γ ≤NAT B − sh} h = 1, . . . , l − 1. Therefore

N i,p,lλ = X \

(
(

l−1⋃
g=1

Yg)
⋃

(

l−1⋃
h=1

Y ′h)

)

We have proved the following result

Theorem 3.2. Let Γ ⊂ Nr0 be a simplicial value semigroup with Apéry set Q =
∪i∈I{q1

i , . . . , q
ti
i } relative to the generators of the extremal rays, with notations

as above. Let λ = qcd +
∑
βkek. Then

µλ =
∑

i∈I,p=1,...,ti,l=1,...,tj

#N i,p,lλ = #

(
X \

(
(

l−1⋃
g=1

Yg)
⋃

(

l−1⋃
h=1

Y ′h)

))

where j = d− i.
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One can compute µλ using the previous result and the inclusion-exclusion
principle. To achieve this computation one only need to know the value of the
following cardinals

#(X) =
∏r
k=1(Bk + 1)

#(Yg) =
∏r
k=1(Bk + 1−max{0, rgk})

#(Y ′h) =
∏r
k=1(Bk + 1−max{0, slk})

#(Yg1 ∩ · · · ∩ Yge ∩ Y ′h1
∩ · · · ∩ Y ′hf

) =∏r
k=1(Bk + 1−max{0, rg1k , . . . , r

ge
k } −max{0, sh1

k , . . . , s
hf

k })

Remark 3.3. We have computed µλ using the Apéry set. This computation will
be used to compute d(λ) but it can be used also to improve the computation of
dϕ(λ).

Let R = F[X1, . . . , Xm]/I be an order domain with weight function ρ. The
surjective morphism ϕ considered in [5] is what is known as the evaluation
map and it is just the evaluation at the points of the variety defined by the
ideal I (over F, where F is the finite field with q elements).

Let I ′ be the radical ideal I ′ = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉. One has that

dϕ(λ) = min{µλ′ | λ <Nr0
λ′, λ′ ∈ {ρ(M + I) | M ∈ ∆(I ′)}}

In [5] µλ is computed directly from the definition, but one can improve that
computation considering the computation of µλ using the Apéry set as in this
section if the value semigroup is simplicial.

3.2 Computing d(λ)

For a simplicial semigroup Γ we compute d(λ), λ ∈ Γ. The following theorem
allows us to do that in a finite number of steps.

Theorem 3.4. Let Γ ⊂ Nr0 be a finitely generated simplicial semigroup, let Q
be its Apéry set with respect to the extremal rays. Let λ be the class of λ ∈ Γ
in M as before. Let λ,η ∈ Γ such that λ <

NAT
η and λ = η then we have

µλ < µη.

Proof.
Let λ = q +

∑
βkek and η = q +

∑
γkek. Since λ <

NAT
η one has that

βk ≤ γk for all k and there exists j ∈ {1, . . . , r} such that βj < γj . Let
λ′ = λ+ ej .

We consider Nλ = {(a1, b1), . . . , (aµλ
, bµλ

)} then (ai + ej , bi) ∈ Nλ′ for
i = 1, . . . , µλ and they are different two by two. Moreover (0,λ′) ∈ Nλ′ and it is
different from the previous pairs. Therefore #Nλ′ ≥ #Nλ+1 and consequently
µλ < µλ′ .

Proceeding by induction we obtain µλ < µη.
Let Γ be a value semigroup with Apéry set Q. Since

d(λ) = min{µη | λ <Nr0
η} = min

q∈Q
{µη | λ <Nr0

η,η = q +
∑

βiei}
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and Q is a finite set, the computation of d(λ) can be achieved if one computes
the minimum in each subsemigroup of the form Γq = q+N0e1 + · · ·+N0er, for
q ∈ Q.

If <
NAT

was a total order one would have to check only the lowest element
(with respect to <NAT) that is greater than λ (with respect to <Nr0

) in each Γq
with q ∈ Q. But <

NAT
is a total order only for Γ ⊂ N0.

Since ≤
NAT

is a partial order for Γ ∈ Nr0 we have to consider more values, but
a finite number of values. We define Tq ⊂ Γq finite such that for all η >Nr0

λ

there exists η′ ∈ Tq such that µη ≥ µη′ . Therefore

d(λ) = min
q∈Q
{µη | η ∈ Tq}

Now we define Tq for the different monomial orderings (1 < Xk ∀k). We
give one definition for a degree or weighted degree ordering and one for the
lexicographical ordering.

Tq for a degree or weighted degree ordering: That is dp, Dp, wp or Wp in
Singular. Let βk ∈ N0 such that ηk = q+βkek >Nr0

λ and q+(βk−1)ek ≤Nr0
λ

(if βk > 0), for k = 1, . . . , r. One has that βi exists because <Nr0
is a degree

ordering.
Let Tq = {q +

∑
γkek >Nr0

λ | γ ≤
NAT

β}. Tq is a finite set. Furthermore

one can discard all the elements of Tq such that there exist other elements of
Tq smaller with respect to ≤

NAT
.

One has that d(λ) = minq∈Q{µη | η ∈ Tq} because if η = q +
∑
γkek,

η >Nr0
λ, η /∈ Tq, there exists γk > βk and therefore η >

NAT
ηi = q + βi ∈ Tq.

Tq for a lexicographical ordering: That is lp in Singular. Let <Nr0
be

the lexicographical ordering with X1 > · · · > Xr.
Let β1 ∈ N0 such that η0 = q + β1e1 >Nr0

λ and q + (β1 − 1)e1 ≤Nr0
λ

(if β1 > 0). If pr1(q + (β1 − 1)e1) = pr1(λ) then let β2 ∈ N0 such that
η1 = q + (β1 − 1)e1 + β2e2 >Nr0

λ and q + (β1 − 1)e1 + (β2 − 1)e2 ≤Nr0
λ (if

β2 > 0).
We define ηk in the same way for k = 1, . . . , j until βj 6= prj(λ). We define

Tq = {η0, η1, . . . , ηj}. Furthermore one can discard all the elements of Tq such
that there exists other element of Tq smaller with respect to ≤NAT .

One has that d(λ) = minq∈Q{µη | η ∈ Tq} because let η = q +
∑
γkek,

η >Nr0
λ, η /∈ Tq. If pr1(η) 6= pr1(λ) then γ1 ≥ β1 and therefore η ≥

NAT
η0 ∈ Tq.

In other case (pr1(η) = pr1(λ)) there exists j0 such that prk(η) = prk(λ) for k =
1, . . . j0 − 1 and prj0(η) 6= prj0(λ), or equivalently γk = βk − 1, k = 1, . . . j0 − 1
and γj0 ≥ βj0 and therefore η ≥NAT ηj0 ∈ Tq.

We have implemented the algorithms of this section in Singular: the com-
putation of the Apéry set of a finitely generated semigroup; µλ for a simplicial
semigroup; and the Feng-Rao bound for a simplicial semigroup.
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3.3 Example

Let Γ = 〈E,A〉 ⊂ N2
0 generated by E = 〈e1 = (2, 0), e2 = (0, 1)〉 and A =

〈(1, 2), (3, 1)〉. The generators of the extremal rays are aligned with the coordi-
nate axes. We consider Γ ordered by the lexicographical order X1 > X2.

The Apéry set of Γ relative to E is Q = {(0, 0), (1, 2), (3, 1)}. Since (1, 2) =
(3, 1) = (1, 0) we write Q = {q1

(0,0) = (0, 0)} ∪ {q1
(1,0) = (1, 2), q2

(1,0) = (3, 1)}.
We consider λ = (12, 14) = (0, 0) + 6e1 + 14e2. We compute µλ. λ = (0, 0)

therefore for i = (0, 0), j = (0, 0) and for i = (1, 0), j = (1, 0).

µλ = N (0,0),1,1 +N (1,0),1,1 +N (1,0),2,1 +N (1,0),1,2 +N (1,0),2,2
B1 = pr1((12, 14)− (0, 0)− (0, 0))/pr1(e1) = 6
B2 = pr2((12, 14)− (0, 0)− (0, 0))/pr2(e2) = 14
N (0,0),1,1 = (6 + 1)(14 + 1) = 105
B1 = pr1((12, 14)− (1, 2)− (1, 2))/pr1(e1) = 5
B2 = pr2((12, 14)− (1, 2)− (1, 2))/pr2(e2) = 10
N (1,0),1,1 = (5 + 1)(10 + 1) = 66

B1 = pr1((12, 14)− (3, 1)− (1, 2))/pr1(e1) = 4
B2 = pr2((12, 14)− (3, 1)− (1, 2))/pr2(e2) = 11
#X = (4 + 1)(11 + 1) = 60
#Y1 = (4 + 1)(11 + 1− 1) = 55 because r1 = −e1 + e2

N (1,0),1,2 = N (1,0),2,1 = 60− 55 = 5

B1 = pr1((12, 14)− (3, 1)− (3, 1))/pr1(e1) = 3
B2 = pr2((12, 14)− (3, 1)− (3, 1))/pr2(e2) = 12
#X = (3 + 1)(12 + 1) = 52
#Y1 = (3 + 1)(12 + 1− 1) = 48 because r1 = −e1 + e2

#Y ′1 = (3 + 1)(12 + 1− 1) = 48 because s1 = −e1 + e2

#Y1 ∩ Y ′1 = (3 + 1)(12 + 1− 1− 1) = 44
N (1,0),2,2 = 52− 48− 48 + 44 = 0

Therefore µ(12,14) = 105 + 66 + 5 + 5 + 0 = 181.
Now we compute d(λ). For each q ∈ Q we compute Tq.
T(0,0): (0, 0) + 7e1 > (12, 14) and (0, 0) + 6e1 ≤ (12, 14), therefore η0 =

(14, 0). Since pr1((0, 0) + 6e1) = pr1(λ) = 12 we consider η1 = (0, 0) +
6e1 + 15e2 = (12, 15) because (0, 0) + 6e1 + 14e2 ≤ (12, 14). Then T(0,0) =
{(14, 0), (12, 15)}.

T(1,2): (1, 2) + 6e1 > (12, 14) and (1, 2) + 5e1 ≤ (12, 14), therefore η0 =
(13, 2). Since pr1((1, 2) + 5e1) 6= pr1(λ) = 12 one has T(1,2) = {(13, 2)}.

T(3,1): (3, 1) + 5e1 > (12, 14) and (3, 1) + 4e1 ≤ (12, 14), therefore η0 =
(13, 1). Since pr1((3, 1) + 4e1) 6= pr1(λ) = 12 one has T(3,1) = {(13, 1)}.

One has that µ(14,0) = 8, µ(12,15) = 194, µ(13,2) = 26 (that can be discarded),
µ(13,1) = 12. Therefore

d((12, 14)) = min
q∈Q
{µη | η ∈ Tq} = 8
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