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Abstract

From a rational convex polytope of dimension r ≥ 2 J.P. Hansen con-
structed an error correcting code of length n = (q−1)r over the finite field
Fq. A rational convex polytope is the same datum as a normal toric variety
and a Cartier divisor. The code is obtained evaluating rational functions
of the toric variety defined by the polytope at the algebraic torus, and it
is an evaluation code in the sense of Goppa. We compute the dimension
of the code using cohomology. The minimum distance is estimated using
intersection theory and mixed volumes, extending the methods of J.P.
Hansen for plane polytopes. Finally we give counterexamples to Joyner’s
conjectures [10].

1 Introduction

An important family of error correcting codes are the Algebraic-Geometry Codes,
introduced by Goppa in 1981. These codes became important in 1982, when
Tsfasman, Vlăduţ and Zink constructed a sequence of error correcting codes
that exceeds the Gilbert-Varshamov bound. This was the first improvement of
that bound in thirty years.

The Algebraic-Geometry codes are defined by evaluating rational functions
on a smooth projective curve over a finite field Fq. The functions of L(D) are
evaluated in certain rational points of the curve, where D is a divisor whose
support does not contain any of the rational points we evaluate at. Their pa-
rameters are estimated easily using the Riemann-Roch theorem because the
points can be seen as divisors.

This construction can be extended to define codes using normal varieties of
any dimension [15] giving rise to the called evaluation codes. One can evaluate
rational functions but the estimation of the parameters is not easy in general,
in particular it is difficult to estimate the minimum distance.

The toric geometry studies varieties that contain an algebraic torus as a
dense subset and furthermore the torus acts on the variety. The importance
of these varieties, called toric varieties, is based on their correspondence with
combinatorial objects, this makes the techniques to study the varieties (such
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as cohomology theory, intersection theory, resolution of singularities, etc) more
precise and the calculus easier.

J.P. Hansen in 1998 (see [7, 8]) considered evaluation codes defined over
some toric surfaces, in order to use the proper combinatorial techniques of toric
surfaces to estimate the parameters of these codes. D. Joyner in 2004 (see
[10]) also considered toric codes over toric surfaces and he gave examples with
good parameters using a library in Magma to compute them. He also proposed
several questions and conjectures. Recently, other works on toric codes have
been published [12, 13].

This work treats evaluation codes over toric varieties of arbitrary dimension
(r ≥ 2) and length (q− 1)r over the finite field of q elements. A rational convex
polytope is the same datum as a normal toric variety and a Cartier divisor. For
each rational convex polytope we define an evaluation code over its associated
toric variety. The dimension of this code is computed using cohomology theory,
by the computation of the kernel of the evaluation map. The minimum distance
is estimated using intersection theory and mixed volumes. Finally, we give a
counterexample to the two conjectures of Joyner [10].

We mainly use the notation of [5] for toric geometry concepts and for all the
toric geometry concepts and results we refer to [5] and [14].

2 Toric Geometry

Let N be a lattice (N ' Zr for some r ≥ 1). Let M = Hom(N,Z) be the dual
lattice of N . One has the dual pairing 〈 , 〉 : M ×N → Z, (u, v) 7→ u(v), which
is Z-bilinear. Let NR = N ⊗ R and let MR = M ⊗ R, MR is the dual vector
space of NR. One has the dual pairing 〈 , 〉 : MR × NR → R, (u, v) 7→ u(v),
which is R-bilinear.

Let Fq be the finite field of q elements and T = (F∗q)r the r-dimensional
algebraic torus. Let σ be a strongly convex rational cone in NR (σ ∩ (−σ) =
{0} and σ is generated by vectors in the lattice), for the sake of simplicity
we will just use the word cone in this work. And let σ∨ be its dual cone
σ∨ = {u ∈MR | 〈u, v〉 ≥ 0 ∀ v ∈ σ}. A face τ of σ is its intersection with any
supporting hyperplane.

Let σ be a cone, then Sσ = σ∨ ∩M is a finitely generated semigroup by
Gordan’s lemma. We define its associated Fq-algebra as Fq[Sσ] =

⊕
u∈Sσ Fqχ

u

(χuχu
′

= χu+u
′
, the unit is χ0) and one can therefore consider Uσ = Spec(Fq[Sσ])

which is the toric affine variety associated to σ.
One can consider χu as Laurent monomial, χu(t) = tu1

1 · · · turr ∈ Fq[t1, . . . , tr]t1···tr ,
this also gives a function T → F∗q . In algebraic groups theory this is called a
character.

A fan 4 in N is a finite set of cones in NR such that: each face of a cone
in 4 is also a cone in 4 and the intersection of two cones in 4 is a face of
each one. For a fan 4 the toric variety X4 is constructed taking the disjoint
union of the affine toric varieties Uσ for σ ∈ 4, and gluing the affine varieties
of common faces.
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A toric variety is a disjoint union of orbits by the action of the torus T . There
is a one to one correspondence between4 and the orbits. For a cone σ we denote
by V (σ) the closure of the orbit of σ, and one has that dimσ + dimV (σ) = r.

A toric variety defined from a fan 4 is non-singular if and only if for each
σ ∈ 4, σ is generated by a subset of a basis of N . We say that a fan 4′ is
a refinement of 4 if each cone of 4 is a union of cones in 4′. One has a
morphism X(4′) → X(4) that is birational and proper. By refining a fan we
can resolve the singularities considering a non-singular refined fan, we assume
in this work that a fan is always refined and therefore its associated toric variety
is non-singular.

A convex rational polytope in MR is the convex hull of a finite set of points
in M , for the sake of simplicity we just say polytope. One can represent a
polytope as the intersection of halfspaces. For each facet F (face of codimension
1) there exists vF ∈ N inward and primitive and an integer aF such that

P =
⋂

F is a facet

{u ∈MR | 〈u, vF 〉 ≥ −aF }

Given a face p of P , let σp be the cone generated by vF for all the facets F
containing p. Then

4P = {σp | p is a face of P}
is a fan which is called fan associated to P and its associated toric variety
is denoted by XP . We assume that the associated fan is non-singular, in other
case we refine the fan and therefore we consider the halfspaces associated to the
new borders (see [6, section 5.4]).

From a polytope one can define the following T -invariant Weil divisor (which
is also a Cartier divisor because the variety is non-singular),

DP =
∑

F is a facet

aFV (ρF )

and given u ∈ P
div(χu) =

∑
F is a facet

〈u, vF 〉V (ρF )

We note that two polytopes with the same inward normal vectors define the
same toric variety. For example both a square and a rectangle in Z2 define
P1 × P1 but they define different Cartier divisors.

A complete fan 4 and a T -invariant Cartier divisor D =
∑
aρV (ρ) define a

polytope,
PD = {u ∈MR | 〈u, v(ρ)〉 ≥ −aρ ∀ ρ border of 4}

A toric variety defined from a fan 4 is normal and it is projective if and
only if 4 is a fan associated to a polytope in MR.

The following lemma allows us to compute a basis of O(DP ).

Lemma 2.1. Let XP be the toric variety associated to a polytope P . The set
H0(XP ,O(DP )) of global sections of O(DP ) is a finite dimensional Fq-vector
space with {χu | u ∈M ∩ P} as a basis.
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3 Toric Codes

Let P be a rational polytope of dimension r ≥ 2, XP its associated refined
variety and DP its associated Cartier divisor on XP as in the previous section.

For t ∈ T = (F∗q)r, the rational functions of H0(XP ,O(DP )), i.e. rational
functions f over XP such that div(f) +DP � 0, can be evaluated at t

H0(XP ,O(DP )) → Fq
f 7→ f(t)

since f is a linear combination of characters χu that can be considered as Laurent
monomials (lemma 2.1). This map is nothing else than the evaluation of a
Laurent polynomial whose monomials have exponents in P ∩M at a point with
non-zero coordinates.

We define toric codes in the same way as Hansen [7]. Evaluating at the
(q − 1)r points of T = (F∗q)r we obtain the toric code CP associated to P ,
which is an evaluation code in the sense of Goppa [15]. CP is the image of the
Fq-linear evaluation map given by

ev : H0(XP ,O(DP )) → (Fq)#T

f 7→ (f(t))t∈T

Since we evaluate in #T points, CP has length n = #T = (q − 1)r.
From lemma 2.1, it follows that H0(XP ,O(DP )) is a finite dimensional Fq-

vector space with basis {χu | u ∈ M ∩ P}, therefore a generator system of the
code CP is {(χu(t))t∈T | u ∈ M ∩ P} which is also a basis of the code if and
only if the evaluation map ev is injective.

Remark 3.1. D. Joyner in [10] defines a code for a toric variety coming from a
complete fan, a Cartier divisor and a 1-cycle, Joyner uses the 1-cycle to evaluate
rational functions at its support. Then he considers the special case where the
1-cycle has support T and he calls these codes standard toric codes. As we
have seen in the previous section a complete fan and a Cartier divisor is the
same data as a polytope P . A polytope P determines the fan 4P , the toric
variety XP and the Cartier Divisor DP . Therefore the toric codes defined here,
which are the same as Hansen’s construction [7], are as general as the standard
toric codes ([10, definition 4.5]) of Joyner.

The following lemma is used in theorem 3.3 to compute the kernel of the
evaluation map and the dimension of the code is given.

Lemma 3.2. Let P be a polytope such that P ∩M is contained in
H = {0, . . . , q − 2} × · · · × {0, . . . , q − 2} ⊂M . Let

f =
∑

u∈P∩M
λuχ

u, λu ∈ Fq

Then (f(t))t∈T = (0)t∈T (f ∈ ker(ev) for some D) if and only if λu = 0,
∀ u ∈ P ∩M .
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Proof.Let f =
∑
u∈P∩M λuχ

u, we can write f as

f(t1, . . . , tr) =
∑

0≤u1,...,ur≤q−2

λu1,...,ur t
u1
1 · · · turr ∈ Fq[t1, . . . , tr]

with λu1,...,ur ∈ Fq. We shall see that f = 0.
We prove the result by induction on the number of variables. If r = 1,

f =
∑

0≤u1≤q−2 λu1t
u1
1 and since f vanishes in all F∗q , it belongs to the ideal

generated by tq−11 − 1, therefore f = 0 (by degree considerations).
Assume that the result holds up to r − 1 variables. Let t1, . . . , tr−1 ∈ F∗q

then

f(t1, . . . , tr−1, tr) = gq−2(t1, . . . , tr−1)tq−2r +· · ·+g1(t1, . . . , tr−1)tr+g0(t1, . . . , tr−1)

with gi(t1, . . . , tr−1) ∈ Fq[t1, ..., tr−1].
One has that f(t1, . . . , tr−1, tr) ∈ Fq[tr] vanishes for all tr ∈ F∗q . Therefore f

belongs to the ideal generated by tq−1r −1, then f = 0 (by degree considerations).
Hence gi = 0 for all i = 1, . . . , q − 2 and we can apply the induction hypothesis
to gi and we obtain f = 0.

The following theorem allows us to compute the kernel of the evaluation map
and a basis of the code (and therefore its dimension).

Theorem 3.3. Let P be a polytope and CP be its associated toric code.
For all u ∈ P ∩M we write u = cu + bu where cu ∈ H = {0, . . . , q − 2} ×

· · · × {0, . . . , q− 2} ⊂M , and bu ∈ ((q− 1)Z)r. Let P be the set, P = {cu | u ∈
P} ⊂M .

One has that,

(1) The kernel of the evaluation map ev is the Fq-vector space generated by

{χu − χu
′
| u, u′ ∈ P ∩M, cu = cu′}

(2) A basis of the code CP is

{(χcu(t))t∈T | u ∈ P ∩M} = {(χu(t))t∈T | u ∈ P}

and therefore the dimension of CP

k = #{cu | u ∈ P ∩M} = #P

Proof.

(1) Let u, u′ ∈ P ∩M such that cu = cu′ . Then ev(χu) = ev(χu
′
) and one has

that ev(χu − χu′) ∈ ker(ev).

On the other hand let f ∈ H0(XP ,O(DP )), with ev(f) = 0.
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f =
∑

u∈P∩M
λuχ

u =
∑

u∈P∩M
λu(χu − χcu) +

∑
u∈P∩M

λuχ
cu

One has for all t ∈ T

f(t)︸︷︷︸
=0

=
∑

u∈P∩M
λu(χu(t)− χcu(t))︸ ︷︷ ︸

=0

+
∑

u∈P∩M
λuχ

cu(t)

Then
∑
u∈P∩M λuχ

cu(t) = 0 for all t ∈ T , and by lemma 3.2 (cu ∈ H ∀ u)
one has that

∑
u∈P∩M λuχ

cu is the zero function. Then f belongs to the

vector space generated by {χu − χu′ | u, u′ ∈ P ∩M, cu = cu′}.

(2) Let f ∈ H0(XP ,O(DP )), and let t ∈ T ,

f(t) =
∑

u∈P∩M
λuχ

u(t) =
∑

u∈P∩M
λuχ

cu+bu(t) =
∑

u∈P∩M
λuχ

cu(t)

Therefore (f(t))t∈T ∈ {(χcu(t))t∈T | u ∈ P ∩M}.
And moreover {(χcu(t))t∈T | u ∈ P ∩M} is a linearly independent set by
lemma 3.2 (cu ∈ H ∀ u).

Two polytopes P , P ′ such that P = P ′ have the same associated toric
code (CP = CP ′). Computing χcu is the same as computing the class of χu

in Fq[X1, . . . , Xr]/J , where J = (Xq−1
1 − 1, . . . , Xq−1

r − 1). In [3] it is proven
that a toric code of dimension 2 is multicyclic, considering the class of χu in
Fq[X1, . . . , Xr]/J one can see that CP is multicyclic for arbitrary dimension.

We say that a polytope P verifies the injectivity restriction if for all
u, u′ ∈ P ∩M,u 6= u′ one has that cu 6= cu′ . Using the above theorem, P verifies
the injectivity restriction if and only if the evaluation map ev is injective and
CP has therefore dimension k = #(P ∩M), which is the number of rational
points in the polytope. In [7, 8] Hansen restricts the size of the polytopes in
order to make the evaluation map injective, by considering the minimal distance
bound. The dimension of the code is therefore the number of rational points of
the polytope.

A discussion of recent algorithms to compute the number of lattice points in
a polytope may be found in [2]. For r = 2 one has Pick’s formula [5] to compute
the number of lattice points:

Lemma 3.4. Let P be a plane polytope. Then

#(P ∩M) = vol2(P ) +
Perimeter(P )

2
+ 1

where vol2 is the Lebesgue volume.
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4 Estimates for the minimum distance

Finally in order to compute the parameters of this family of codes we com-
pute the minimum distance. We use the same techniques as [7] for dimension
2, and compute the intersection numbers using mixed volumes. We also ex-
tend this computations to arbitrary dimension. In order to compute the min-
imum distance d of the linear code CP we should compute the minimum
weight of a non-zero word, i.e. the maximum number of zeros of a function f
in H0(XP ,O(DP )) \ {0} in T . We solve this problem using intersection theory.

Let u1 = (1, 0, . . . , 0), u2 = (0, 1, 0, . . . , 0), . . . , ur = (0, . . . , 0, 1). Each Fq-
rational point of T is contained in one of the (q − 1)r−1 lines

Cη1,...,ηr−1
= V({χui − ηi : i = 1, . . . , r − 1}), ηi ∈ F∗q ∀i

Let f ∈ H0(XP ,O(DP )) \ {0}. Assume that f is identically zero in a of the
lines, and denote by A the set of subindexes of the a lines where f vanish.

Following [9, proposition 3.2], in the other lines the number of zeros is given
by the intersection number of a Cartier divisor with a 1-cycle, the integer DP ·
Cη1,...,ηr−1 . Therefore the number of zeros of f in T is bounded by

a(q − 1) +
∑

ηi∈F∗q ,(η1,...,ηr−1)/∈A

(DP · Cη1,...,ηr−1)

In order to compute the maximum number of zeros of f one has to compute
the intersection number of the Cartier divisor and the 1-cycle and bound the
number of lines where f is 0.

Following [4] DP · Cη1,...,ηr−1
= DP · C for any C defined above. Therefore

the number of zeros of f is bounded by

a(q − 1) + ((q − 1)r−1 − a)(DP · C)

and the minimum distance is bounded by

d(CP ) ≥ n− (a(q − 1) + ((q − 1)r−1 − a)(DP · C))

One has that

DP · C = DP · (div(χu1))0 · . . . · (div(χur−1))0

and following [5] one see that this intersection number is the mixed volume of
the associated polytopes

r!Vr(P, P(div(χu1 ))0 , . . . , P(div(χur−1 ))0)

The mixed volume Vr of r polytopes P1, . . . , Pr is

Vr(P1, . . . , Pr) =
1

r!

r∑
j=1

(−1)r−j
∑

1≤i1<···<ij≤r

volr(Pi1 + · · ·+ Pij )
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where Volr is the Lebesgue volume. An algorithm to compute the Lebesgue
volume of a polytope may be found in [1]. Moreover under certain hypothesis
the mixed volume can be computed directly [11].

Let f ∈ H0(XP ,O(DP )), since CP = CP ′ if and only if P = P ′ we assume
without loss of generality that degti f ≤ q − 2.

f(t1, . . . , tr) = f0(t1, . . . , tr−1) + f1(t1, . . . , tr−1)tr + · · ·+ fq−2(t1, . . . , tr−1)tq−2r

let Cη1,...,ηr−1 be a line where f vanishes, f(η1, . . . , ηr−1, tr) ∈ Fq[tr] and
deg f(η1, . . . , ηr−1, tr) < tq−1r therefore since f(η1, . . . , ηr−1, tr) = 0 ∀ tr ∈ F∗q it
follows fi(η1, . . . , ηr−1) = 0 ∀ i.

The number a is less than or equal to the maximum number of zeros of a non
zero function f ∈ H0(XP ′ ,O(DP ′)) where P ′ is the r-projection of the polytope
P . This can be repeated until we reach dimension 2.

For a plane polytope we compute the minimum distance as in [8].
Let us consider P a plane polytope and let us bound the minimum distance.

In dimension 2 we can improve the previous computation. Let
f ∈ H0(XP ,O(DP )) \ {0}, and let us assume that f is identically 0 in a lines.
Therefore following [9, proposition 3.2] in the other (q−1−a) lines the maximum
number of zeros is DP · div(χu1).

In dimension 2 a 1-cycle is a Weil divisor and since f vanish in a of the
previous lines one has that

div(f) +DP − a(div(χu1))0 � 0

Or equivalently, f ∈ H0(XP ,O(DP − a(div(χu1))0)), and the maximum
number of zeros of f in the other (q−1−a) lines isDP−a(div(χu1))0·(div(χu1))0,
which is smaller than or equal to the previous one. This will probably allow us
to to give a sharper bound.

From lemma 2.1 one has that

a ≤ max{u2 − u′2 | u1 = u′1, (u1, u2) ∈ P, (u′1, u′2) ∈ P}

Finally we compute the intersection number of the two Cartier divisors just
in the same way as for r > 2, using the mixed volume of the associated polytopes:

DP − a(div(χu1))0 · (div(χu1))0 = 2V2(PDP−a(div(χu1 ))0 , P(div(χu1 ))0)

Remark 4.1. For a polytope P large enough one can obtain a trivial bound for
the minimum distance, which is not the case when the injectivity restriction is
satisfied. For instance if we consider a rectangle P with a basis of length greater
than q − 1 we obtain a negative bound for the minimum distance. Another
possibility may be to apply the above computations to P to obtain a non trivial
bound but unfortunately P is not in general a convex polytope. This is similar
to the situation for an AG-code L(D,G) when n ≤ 2g − 2 deg(G) [15].
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The following proposition gives an upper bound for the minimum distance
and in particular it may be used to check if the previous bound is sharp. This
result extends the computations of [8, 10].

Proposition 4.2. Let P be a polytope and CP its associated linear code.
Let u ∈M and Q be {0, 1, . . . , l1} × · · · × {0, 1, . . . , lr} ⊂M , where 0 ≤ li ≤

q−2 (some li can be equal to zero), if u+Q is contained into the set P , (where
u = cu + bu, cu ∈ H, bu ∈ ((q − 1)Z)r, P = {cu | u ∈ P ∩M} as in theorem
3.3) then

d ≤ n−
r∑
j=1

(−1)j+1
∑

i1<···<ij

li1 · · · lij (q − 1)r−j

Proof.Let ai1, a
i
2, . . . , a

i
li
∈ F∗q be pairwise different elements for i = 1, . . . , r.

Let f(t1, . . . , tr) = tu1
1 · · · turr

∏
(ti− ai1) · · · (ti− aili). The number of zeros of

f in T is equal to
∑r
j=1(−1)j+1

∑
i1<···<ij li1 · · · lij (q− 1)r−j (by the inclusion-

exclusion principle).
Since f is a linear combination of monomials with exponents in (u+Q)∩M

and u+Q ⊂ P one has that for each monomial χcu in f there exists bu ∈
((q− 1)Z)r such that χcu+bu ∈ H0(XP ,O(DP )), and both polynomials take the
same values in T . Proceeding in the same way with all the monomials of f one
obtains a function f ′ such that f ′(t) = f(t), ∀t ∈ T and f ′ ∈ H0(XP ,O(DP )).
Therefore an upper bound for the minimum distance is

d ≤ n−
r∑
j=1

(−1)j+1
∑

i1<···<ij

li1 · · · lij (q − 1)r−j

5 Examples

We consider two examples. We first ilustrate the computations of the param-
eters for a sequence of polytopes (Pr)r≥2 with dim(Pr) = r and where the
r-projection of Pr is Pr−1. The second example shows that the bound for the
minimum distance, using intersection theory, is not equal to the upper bound
of proposition 4.2.

Example 5.1. Let P2 be the plane polytope of vertices (0, 0), (b1, 0), (b1, b2),
(0, b2) with b1, b2 < q − 1. This is the code of [7, proposition 3.2].

The fan 4P2
associated to P2 is generated by cones with edges generated by

v(ρ1)) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 0) and v(ρ4) = (0,−1). The toric
variety XP2

is non-singular.

P2 =

4⋂
i=1

{〈u, ρi〉 ≥ −ai}

where a1 = 0, a2 = 0, a3 = b1, a4 = b2. Therefore DP =
∑
aiV (ρi) =

b1V (ρ3) + b2V (ρ4).
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Since P2 is a plane polytope the code CP2
has length n = (q − 1)2. The

evaluation map ev is injective since b1, b2 < q − 1 and P2 verifies the injectivity
restriction 3.3. Therefore one has that the dimension of CP2

is

k = dim H0(XP2
,O(DP2

)) = #P2 ∩M = (b1 + 1)(b2 + 1)

From section 4 we get that the maximum number of zeros of a function f in
H0(XP2 ,O(DP2)) is smaller than or equal to

a(q − 1) + (q − 1− a)(DP2
− a(div(χu1))0 · (div(χu1))0)

where a ≤ b1.
One has that div(χu1) =

∑
〈u1, v(ρi)〉V (ρi) = V (ρ1)− V (ρ3). Therefore

(div(χu1))0 = V (ρ1).

DP2 − a(div(χu1))0 · (div(χu1))0 = 2V2(PDP2
−a(div(χu1 ))0 , P(div(χu1 ))0)

= vol2(PDP2
−a(div(χu1 ))0 + P(div(χu1 ))0)

−vol2(PDP2
−a(div(χu1 ))0)

−vol2(P(div(χu1 ))0)

= ((b1 − a+ 1)b2)− ((b1 − a)b2)− (0)

= b2

Because

• PDP2
−a(div(χu1 ))0 +P(div(χu1 ))0 is the polytope of vertices (a−1, 0), (b1, 0),

(b1, b2) and (a− 1, b2).

• PDP2
−a(div(χu1 ))0 is the polytope of vertices (a, 0), (b1, 0), (b1, b2) and

(a, b2).

• P(div(χu1 ))0 is the polytope of vertices (−1, 0) and (0, 0).

Therefore the minimum distance is bounded by

d ≥ (q − 1)2 − (b1(q − 1− b2) + (q − 1)b2) = (q − 1− b1)(q − 1− b2)

We then apply proposition 4.2, with u = 0 and l1 = b1, l2 = b2. u+Q ⊂ P2,
then indeed u+Q = P2, and we obtain

d ≤ (q − 1)2 − b1(q − 1)− b2(q − 1) + b1b2 = (q − 1− b1)(q − 1− b2)

And therefore d = (q − 1− b1)(q − 1− b2)
Let P3 be the 3 dimensional polytope of vertices (0, 0, 0), (b1, 0, 0), (b1, b2, 0),

(0, b2, 0), (0, 0, b3), (b1, 0, b3), (b1, b2, b3), (0, b2, b3) with b1, b2, b3 < q − 1.
The fan 4P3

associated to P3 is generated by cones with edges generated
by v(ρ1)) = (1, 0, 0), v(ρ2) = (−1, 0, 0), v(ρ3) = (0, 1, 0), v(ρ4) = (0,−1, 0),
v(ρ5) = (0, 0, 1), v(ρ6) = (0, 0,−1). The toric variety XP3 is non-singular.

P3 =

6⋂
i=1

{〈u, ρi〉 ≥ −ai}
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where a1 = 0, a2 = b1, a3 = 0, a4 = b2, a5 = 0, a6 = b3. Therefore DP =∑
aiV (ρi) = b1V (ρ2) + b2V (ρ4) + b3V (ρ6).
Since P3 is a 3 dimensional polytope the code CP3

has length n = (q − 1)3.
The evaluation map ev is injective since b1, b2, b3 < q − 1 and P3 verifies the
injectivity restriction 3.3. Therefore one has that the dimension of CP3 is

k = dim H0(XP3
,O(DP3

)) = #P3 ∩M = (b1 + 1)(b2 + 1)(b3 + 1)

From section 4 the maximum number of zeros of a function f ∈ H0(XP3
,O(DP3

))
is smaller than or equal to

a(q − 1) + ((q − 1)2 − a)(DP3
· C)

where C = V({χu1 , χu2}) and a is smaller than or equal to the maximum number
of zeros of a function defined by the 3-projection of P3, i.e. P2. Therefore
a ≤ b1(q − 1− b2) + (q − 1)b2.

One has that div(χu1) =
∑
〈u1, v(ρi)〉V (ρi) = V (ρ1)− V (ρ2). Therefore

(div(χu1))0 = V (ρ1). div(χu2) =
∑
〈u1, v(ρi)〉V (ρi) = V (ρ3) − V (ρ4). Hence

(div(χu2))0 = V (ρ3).

DP3
· C = DP3

· (div(χu1))0 · (div(χu2))0

= 3!V3(P, P(div(χu1 ))0 , P(div(χu2 ))0)

= vol3(P3 + P(div(χu1 ))0 + P(div(χu2 ))0)− vol3(P3 + P(div(χu1 ))0)

−vol3(P3 + P(div(χu2 ))0)− vol3(P(div(χu1 ))0 + P(div(χu2 ))0)

+vol3(P3) + vol3(P(div(χu1 ))0) + vol3(P(div(χu2 ))0)

= ((b1 + 1)(b2 + 1)(b3))− ((b1 + 1)b2b3)− (b1(b2 + 1)b3)− (0)

+(b1b2b3) + (0) + (0)

= b3

Because

• P3 + P(div(χu1 ))0 + P(div(χu2 ))0 is the polytope of vertices (−1,−1, 0),
(b1,−1, 0), (b1, b2, 0), (−1, b2, 0), (−1,−1, b3), (b1,−1, b3), (b1, b2, b3) and
(−1, b2, b3).

• P3 + P(div(χu1 ))0 is the polytope of vertices (−1, 0, 0), (b1, 0, 0), (b1, b2, 0),
(−1, b2, 0), (−1, 0, b3), (b1, 0, b3), (b1, b2, b3) and (−1, b2, b3).

• P3+P(div(χu2 ))0 is the polytope of vertices (0,−1, 0), (b1,−1, 0), (b1, b2, 0),
(0, b2, 0), (0,−1, b3), (b1,−1, b3), (b1, b2, b3) and (0, b2, b3).

• P(div(χu1 ))0 + P(div(χu2 ))0 is the polytope of vertices (0, 0, 0), (−1, 0, 0),
(−1,−1, 0) and (0,−1, 0).

• P3 is the polytope of vertices (0, 0, 0), (b1, 0, 0), (b1, b2, 0), (0, b2, 0), (0, 0, b3),
(b1, 0, b3), (b1, b2, b3) and (0, b2, b3).

• P(div(χu1 ))0 is the polytope of vertices (−1, 0, 0) and (0, 0, 0).
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• P(div(χu2 ))0 is the polytope of vertices (0,−1, 0) and (0, 0, 0)

Therefore the minimum distance is bounded by

d ≥ n−((b1(q−1−b2)+(q−1)b2)(q−1−b3)+(q−1)2b3) = (q−1−b1)(q−1−b2)(q−1−b3)

We then apply proposition 4.2, with u = 0 and l1 = b1, l2 = b2, l3 = b3.
u+Q ⊂ P3, then indeed u+Q = P3, and we obtain

d ≤ (q − 1− b1)(q − 1− b2)(q − 1− b3)

And therefore d = (q − 1− b1)(q − 1− b2)(q − 1− b3).
Computing the lower and upper bound of the minimum distance for an

hypercube Pr of dimension r with sides b1, . . . , br < q − 1 one obtains that for
all r ≥ 2 the minimum distance dr of CPr is equal to

d2 = (q − 1− b1)(q − 1− b2)

dr = (q − 1)r − ((q − 1)r−1 − dr−1)(q − 1− br)− br(q − 1)r−1, ∀ r ≥ 3

one can easily see (by induction on r) that it is equal to

dr = (q − 1− b1) · · · (q − 1− br)

Therefore, the code CPr associated to the hypercube of sides b1, . . . , br has
parameters [(q − 1)r,

∏
(bi + 1),

∏
(q − 1− bi)]. [13] also consider this example,

but the distance is there computed using Vandermonde determinants.

In Hansen’s examples [8] for plane polytopes and also in the previous example
the lower bound of the minimum distance, using intersection theory, is equal
to the upper bound of the proposition 4.2. One could think that the previous
bound is always sharp, the following example shows this is not true.

Example 5.2. Let P be the plane polytope of vertices (0, 0), (b, 0), (2b, b),
(2b, 2b), (b, 2b), (0, b) with b < q − 1.

The fan 4P associated to P is generated by cones with edges generated by
v(ρ1)) = (1, 0), v(ρ2) = (0, 1), v(ρ3) = (−1, 1), v(ρ4) = (−1, 0), v(ρ5) = (0,−1),
v(ρ6) = (1,−1). The toric variety XP is non-singular.

P =

6⋂
i=1

{〈u, v(ρi)〉 ≥ −ai}

where a1 = 0, a2 = 0, a3 = b, a4 = 2b, a5 = 2b, a6 = b. Therefore DP =∑
aiV (ρi) = bV (ρ3) + 2bV (ρ4) + 2bV (ρ5) + V (ρ6).
Since P is a plane polytope the code CP has length n = (q − 1)2. The

evaluation map ev is injective since b < q − 1 and P verifies the injectivity
restriction. Therefore one has that the dimension of CP is

k = dim H0(XP ,O(DP )) = vol2(P ) +
Perimeter(P )

2
+ 1 = 3b2 + 3b+ 1
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From section 4 the maximum number of zeros of a function f ∈ H0(XP ,O(DP ))
is smaller than or equal to

a(q − 1) + (q − 1− a)(DP − a(div(χu1))0 · (div(χu1))0)

where a ≤ 2b.
One has that div(χu1) =

∑
〈u1, v(ρi)〉V (ρi) = V (ρ1)−V (ρ3)−V (ρ4)+V (ρ6).

Therefore (div(χu1))0 = V (ρ1) + V (ρ6).

DP − a(div(χu1))0 · (div(χu1))0 = 2V2(PDP−a(div(χu1 ))0 , P(div(χu1 ))0)

= vol2(PDP−a(div(χu1 ))0 + P(div(χu1 ))0)

−vol2(PDP−a(div(χu1 ))0)

−vol2(P(div(χu1 ))0)

= (3b2 − 2ab+ 2b)− (3b2 − 2ab)− (0)

= 2b

Because

• PDP−a(div(χu1 ))0 + P(div(χu1 ))0 is the polytope of vertices (a− 1, 0), (b, 0),
(2b, b), (2b, 2b), (b+ a− 1, 2b) and (a− 1, b− a).

• PDP−a(div(χu1 ))0 is the polytope of vertices (a, 0), (b, 0), (2b, b), (2b, 2b),
(b+ a, 2b) and (a, b− a).

• P(div(χu1 ))0 is the polytope of vertices (−1, 0) and (0, 0).

Therefore the minimum distance is bounded by

d ≥ n− (2b(q − 1− 2b) + (q − 1)2b) = (q − 1)2 − 4b(q − 1) + 4b2

As we claimed before in this example the lower bound is different from the
upper bounds. One can apply proposition 4.2 by considering a segment of length
at most 2b and a square of side at most b inside P .

Let u = (0, b) and Q = {0, 1, . . . , 2b} × {0}, u+Q ⊂ P . Therefore
d ≤ (q − 1)2 − 2b(q − 1).

Let u = (0, 0) and Q = {0, 1, . . . , b} × {0, 1, . . . , b}, u + Q ⊂ P . Therefore
d ≤ (q − 1)2 − (2b(q − 1)− b2).

Then (q−1)2−4b(q−1)+4b2 < (q−1)2−2b(q−1) < (q−1)2−(2b(q−1)−b2).

6 Joyner’s questions and conjectures

The question 3.4 of [10] asks “Under what conditions (if any) is the map ev
an injection?”. Our theorem 3.3 answers completely this question for standard
toric codes.

We shall prove that conjectures 4.2 and 4.3 of [10] are not true. As a coun-
terexample we consider a code from theorem 1.2 of [8] and a code from theorem
1.3 of [8] respectively.
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Conjecture 6.1. [10, Conjecture 4.2]: Let C(E,D,X) [10, definition (5), sec-
tion 3.1] be the toric code associated to the 1-cycle E, the T -invariant Cartier
divisor D and the toric variety X. Let

• X be a non-singular toric variety of dimension r.

• n be so large that there is an integer N > 1 such that 2Nvolr(PD) ≤ n ≤
2N2volr(PD)

If q is “sufficiently large” then any f ∈ H0(X,O(D)) has no more than n
zeros in the rational points of X. Consequently,

d ≥ n− 2Nvolr(PD)

Here “sufficiently large” may depend on X, C and D but not on f .

Counterexample 6.2. We give a counterexample to the previous conjecture.
Let CP be the code associated to the plane polytope P of vertices (0, 0), (1, 1),
(0, 2). Following [8] CP has length n = (q− 1)2 and minimum distance equal to
d = (q− 1)2− 2(q− 1). The non-singular toric variety X is X4, where 4 is the
fan generated by cones with edges generated by v(ρ1)) = (1, 0), v(ρ2) = (−1, 1),
v(ρ3) = (−1, 0), v(ρ4) = (−1,−1). E is the formal sum of all the points of T
because CP is a standard toric code. We consider D = DP , that is the Cartier
divisor associated to P , D = V (ρ3) + V (ρ4) and that volr(PD) = volr(P ) = 1.

From theorem 3.3 we know that q “sufficiently large” means q ≥ 3. We claim
that the conjecture does not hold for q ≥ 5, let q be greater or equal than 5 and
N = q − 2.

2Nvolr(PD) ≤ n ≤ 2N2volr(PD)⇔ 2(q − 2) ≤ (q − 1)2 ≤ 2(q − 2)2

that holds for q ≥ 5.
The conjecture claims that the minimum distance satisfies

d ≥ n− 2Nvolr(PD) = (q − 1)2 − 2(q − 2) > (q − 1)2 − 2(q − 1) = d

therefore for q ≥ 5 the conjecture gives a lower bound strictly greater than the
minimum distance, a contradiction.

Conjecture 6.3. [10, Conjecture 4.3]: Let C(E,D,X) [10, definition (5), sec-
tion 3.1] be the toric code associated to the 1-cycle E, the T -invariant Cartier
divisor D and the toric variety X. Let

• X be a non-singular toric variety of dimension r.

• ψD(v) = minu∈PD∩M 〈u, v〉 be strictly convex

• deg(E) > deg(Dr)
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If q is “sufficiently large” then any f ∈ H0(X,O(D)) has no more than n
zeros in the rational points of X. Consequently,

k ≥ dim H0(X,O(D)) = #PD ∩M

d ≥ n− r!(#PD ∩M)

Moreover if n > r!(#PD ∩M) then dim H0(X,O(D)) = #PD ∩M

Counterexample 6.4. We give a counterexample to the previous conjecture.
Let CP be the code associated to the plane polytope P of vertices (0, 0), (1, 0),
(0, 1). Following [8] CP has length n = (q− 1)2 and minimum distance equal to
d = (q − 1)2 − (q − 1). The non-singular toric variety X is X4, where 4 is the
fan generated by cones with edges generated by v(ρ1)) = (1, 0), v(ρ2) = (0, 1),
v(ρ3) = (−1,−1), i.e. X = P2. E is the formal sum of all the points of T
because C is a standard toric code. We consider D = DP , that is the Cartier
divisor associated to P , D = V (ρ3), therefore one has that ψD is strictly convex
(see [5, pag 70]). One has for P = PD that #P ∩M = 3 and (q−1)2 = deg(E) >
deg(D) = 1

From theorem 3.3 we know that “sufficiently large” means q ≥ 3. We claim
that the conjecture does not hold for q ≥ 8, let q be greater or equal than 8.

The conjecture claims that the minimum distance satisfies

d ≥ n− r!(#PD ∩M) = (q − 1)2 − 2 · 3 > (q − 1)2 − (q − 1) = d

therefore for q ≥ 8 the conjecture gives a lower bound strictly greater than the
minimum distance, a contradiction.
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