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Abstract

The order bound for the minimum distance of algebraic geometry codes
was originally defined for the duals of one-point codes and later general-
ized for arbitrary algebraic geometry codes. Another bound of order type
for the minimum distance of general linear codes, and for codes from order
domains in particular, was given in [1]. Here we investigate in detail the
application of that bound to one-point algebraic geometry codes, obtain-
ing a bound d∗ for the minimum distance of these codes. We establish
a connection between d∗ and the order bound and its generalizations.
We also study the improved code constructions based on d∗. Finally we
extend d∗ to all generalized Hamming weights.

1 Introduction

Algebraic geometry codes, or AG codes, over the finite field Fq with q el-
ements are constructed from a (projective, non-singular, geometrically irre-
ducible) algebraic curve X|Fq and two rational divisors with disjoint support,
D = P1 + · · · + Pn and G . The code C(D,G) is defined as the image of the
Riemann-Roch space L(G) by the evaluation at D map evD : L(G) → Fnq ,
evD(f) = (f(P1), . . . , f(Pn)), see Section 3 or [3, 10, 14]. The divisor G is often
taken as a multiple of a single point, G = mQ, with Q 6∈ supp(D). In this case
C(D,G) = C(D,mQ) is called one-point code.

∗This work was supported in part by Danish National Science Research Council Grant
FNV-21040368, the Danish FNU grant 272-07-0266, Junta de CyL under grant VA065A07
and by Spanish Ministry for Science and Technology under grants MTM2007-66842-C02-01
and MTM 2007-64704.
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Given a code C(D,mQ) the first task is to compute its parameters: length,
dimension and minimum distance. The length is obviously n = deg(D). In
order to compute the dimension an important role is played by the Weierstrass
semigroup at Q,

H = H(Q) := {−vQ(f) : f ∈ L(∞Q) \ {0}} = {h1 = 0 < h2 < . . . }

where vQ is the valuation at Q and L(∞Q) = ∪r=0,1,...L(rQ). In fact, if hi < n
then the dimension of C(D,hiQ) is i. For m ≥ n this is no longer true in
general, as the evaluation map evD : L(mQ) → Fnq might have a non-trivial
kernel, L(mQ−D). Thus we consider the set

H∗ = H∗(D,Q) := {m ∈ N0 : C(D,mQ) 6= C(D, (m− 1)Q)}.

Knowing H∗ is equivalent to knowing the dimension of all codes C(D,mQ).
It is clear that H∗ consists of n elements, that H∗ ⊂ H and that for m < n,
m ∈ H∗ if and only if m ∈ H.

Regarding the minimum distance d = d(C(D,mQ)) the simplest estimate is
given by the Goppa bound, d ≥ n−m. The Goppa bound does not give the true
minimum distance in many cases. For example, it does not give any information
when m ≥ n. This problem can be solved by using the improved Goppa bound,
d ≥ n −m + γa+1, where a = `(mQ −D) is the abundance of C(D,mQ). The
drawback of this improved bound is that it is based on the gonality sequence
(γi) of the curve X , see [11], which is difficult to compute.

Besides uniform bounds, some of the most interesting known bounds for d
are of order type. These bounds are based on obtaining different estimates for
different subsets of codewords. They are successful if for each subset we can find
estimates better than a uniform bound for all codewords, see [4]. The original
order bound dORD (also called Feng-Rao bound) was introduced by Feng and
Rao in [7] and by Høholdt, van Lint and Pellikaan in [10]. It usually gives
very good results, but it has the disadvantage that it can only be applied to
the duals of one-point codes, which are not one-point codes in general. A nice
generalization of this bound for arbitrary AG codes was given by Beelen [2] and
later improved by Duursma, Kirov and Park in a sequence of articles [4, 6, 5].

Another bound of order type for general linear codes was given in [1]. This
bound was applied to order domain codes and to one-point codes in particular.
In the present work, we investigate in detail the case of one-point codes, obtain-
ing a bound d∗. This bound was already present in [1] (Proposition 37) but here
we state it explicitly, by showing how to compute d∗ from the set H∗ defined
above. Besides we investigate the connection to the order bound. We show that
d∗ is a special case of the Beelen and Duursma-Kirov-Park generalized bouds.
Since it can happen that the generalized order bounds give different results than
the original one, we also investigate the connection of d∗ to the original order
bound dORD. We show that when both can be applied -namely when the dual
of a one-point code is isometric to a one-point code- then both coincide. Fur-
thermore we investigate how to construct improved codes from d∗ and how to
extend d∗ to all generalized Hamming weights. These problems have never been
treated in the aforementioned works of Beelen and Duursma-Kirov-Park. Thus
the main purpose of this article is not to present a new or better bound, but (i)
to make the conection between the Andersen-Geil bound and the order bounds
for AG one-point codes, (ii) to emphasize the possibility of manage the order
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bound entirely in the language of one-point evaluation codes and Weierstrass
semigroups; (iii) to study how to construct improved codes; and (iv) to extend
d∗ to all generalized Hamming weights.

The paper is structured in 5 sections: In Section 2 we briefly recall the
bound for the minimum distance of linear codes from [1] as well as the main
facts and definitions we need. We introduce the bound d∗ for one-point codes in
Section 3, where we also show the connection with the generalized order bounds
of Beelen and Duursma-Kirov-Park. We also deal with improved codes, whose
construction becomes now very easy. Some worked examples where we show
how to compute d∗ are included. In Section 4 we compare the bound d∗ to the
strict order bound (that is the original order bound dORD with respect to the
evaluation map evD), showing that when both can be applied then they give the
same result. Furthermore, we continue our study of improved codes. Finally in
Section 5 we extend d∗ to all generalized Hamming weights.

2 The bound from [1] for the minimum distance
of linear codes

For the convenience of the reader, we begin with a brief explanation of some
results from [1]. Let B = {b1, . . . ,bn} be a basis of Fnq . We consider the codes
C0 = (0), and for i = 1, . . . , n,

Ci = 〈b1, . . . ,bi〉.

Associated to these codes we consider the (valuation-like) map ν : Fnq →
{0, . . . , n} defined by ν(v) = min{i : v ∈ Ci}.

Lemma 2.1. Let v1, . . . ,vm ∈ Fnq . Then

(a) ν(v1 + · · · + vm) ≤ max{ν(v1), . . . , ν(vm)}. If there exists j such that
ν(vi) < ν(vj) for all i 6= j, then equality holds.

(b) dim(〈v1, . . . ,vm〉) ≥ #{ν(v1), . . . , ν(vm)}. Conversely, if D ⊆ Fnq is a
linear subspace of dimension m, then there exists a basis {v1, . . . ,vm} of
D such that #{ν(v1), . . . , ν(vm)} = m.

Proof. (a) is clear. (b) Assume #{ν(v1), . . . , ν(vm)} = t and ν(v1) < · · · <
ν(vt). If λ1v1+· · ·+λtvt = 0 then 0 = ν(0) = ν(λ1v1+· · ·+λtvt) = max{ν(vi) :
λi 6= 0}. By (a) this implies λ1 = · · · = λt = 0. Conversely write Di = D ∩ Ci.
For all i = 1, . . . , n, it holds that Di = Di−1 ⊕ (D ∩ 〈bi〉), hence dim(Di−1) ≤
dim(Di) ≤ dim(Di−1)+1 and the last inequality is an equality preciselym times.
If Di 6= Di−1, take a vector vi ∈ Di \ Di−1. Then #{ν(v1), . . . , ν(vm)} = m
and according to (b), {v1, . . . ,vm} is a basis of D.

For c ∈ Fnq , c 6= 0, we consider the space V (c) = {v ∈ Fnq : supp(v) ⊆
supp(c)} = {v ∗ c : v ∈ Fnq }, where the component-wise product is defined
as usual: v ∗ c = (v1c1, . . . , vncn). Clearly dim(V (c)) = wt(c), where wt(c)
denotes the weight of c. Now consider in {1, . . . , n}2 the order (r, s) < (i, j) if
and only if r ≤ i, s ≤ j and (r, s) 6= (i, j). A pair (bi,bj) is called well-behaving
if ν(br ∗ bs) < ν(bi ∗ bj) for all (r, s) < (i, j). For i = 1, . . . , n, define

Λi = {bj ∈ B : (bi,bj) is well-behaving}.
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Since we can write c = λ1b1 + · · · + λν(c)bν(c) with λν(c) 6= 0, then for
bj ∈ Λν(c) we have

ν(c ∗ bj) = ν(

ν(c)∑
i=1

λibi ∗ bj) = ν(bν(c) ∗ bj).

Proposition 2.2. Let c ∈ Fnq . If c 6= 0 then wt(c) ≥ #Λν(c).

Proof. We have wt(c) = dim(V (c)) ≥ dim(〈c ∗ b1, . . . , c ∗ bn〉) ≥ #{ν(c ∗
b1), . . . , ν(c ∗ bn)} ≥ #{ν(c ∗ bj) : j ∈ Λν(c)} = #{ν(bν(c) ∗ bj) : j ∈ Λν(c)} =
#Λν(c).

Theorem 2.3. For i = 1, . . . , n, the true minimum distance of Ci, satisfies
d(Ci) ≥ min{#Λr : r ≤ i}.

This bound can be applied to an arbitrary linear code C, just by including
it into an increasing chain of codes C1 ⊂ · · · ⊂ Ck−1 ⊂ C ⊂ Ck+1 ⊂ · · · ⊂ Cn =
Fnq . Such a chain is quite natural for one-point codes.

3 A bound for the minimum distance of one-
point codes

3.1 The bound

Let X be a (projective, non-singular, geometrically irreducible algebraic) curve
of genus g defined over the finite field Fq. We construct one-point codes from
X in the usual way. Let Q,P1, . . . , Pn be different rational points in X . Let
v = −vQ, where vQ is the valuation at Q, and consider the spaces L(mQ) and
the algebra L(∞Q) = ∪r=0,1,...L(rQ). Let D = P1 + · · · + Pn and ev = evD :
L(∞Q) → Fnq be the evaluation map at D. The one-point codes C(D,mQ)
arising from X , D and Q are defined as the images of the sets L(mQ) by ev,
that is C(D,mQ) = ev(L(mQ)). Note that C(D, (n + 2g − 1)Q) = Fnq , hence
we can restrict ourselves to 0 ≤ m ≤ n+ 2g − 1.

Let C = C(D,mQ). We shall apply to C the bound from Section 2 with
respect to the sequence of codes C1 ⊂ C2 ⊂ · · · ⊂ Cn, obtained from the
sequence (C(D,mQ))m=0,...,n+2g−1 by deleting the repeated codes. Thus the
map ν can be written as

ν(v) = min{dim(C(D,mQ)) : v ∈ C(D,mQ)}.

From now on, unless explicitly said, we restrict ourselves to codes with length
n > 2g + 2.

Lemma 3.1. For f ∈ L(∞Q) we have ν(ev(f)) ≤ dim(C(D, v(f)Q)). If C(D,
v(f)Q) 6= C(D, (v(f)−1)Q) then equality holds, ν(ev(f)) = dim(C(D, v(f)Q)).

Proof. The first statement is clear since f ∈ L(v(f)Q) and hence ev(f) ∈ C(D,
v(f)Q). For the second one, note that if m = v(f), then L(mQ) = L((m −
1)Q) + 〈f〉, and hence C(D,mQ) = C(D, (m − 1)Q) + 〈ev(f)〉. Thus ev(f) ∈
C(D,mQ) \ C(D, (m− 1)Q).
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Note that it is not true in general that ν(ev(f)) = dim(C(D, v(f)Q)) because
ev only depends on the points P1, . . . , Pn, and thus ev(f) might be equal to
ev(g) with g ∈ C(D, (v(f) − 1)Q). For example, take a non-constant function
f ∈ L(∞Q). Then v(fq) = qv(f) but ev(fq) = ev(f).

Let H = H(Q) = {h1 = 0 < h2 < . . . } be the Weierstrass semigroup of Q.
As we know, this is a numerical semigroup of finite genus g. Let l1, . . . , lg be
the gaps of H. Let us consider the set H∗ defined in the Introduction, namely

H∗ = H∗(D,Q) := {m ∈ N0 : C(D,mQ) 6= C(D, (m− 1)Q)}.

It is clear that H∗ consists of n elements. Let us write H∗ = {m1, . . . ,mn}.
It is also clear that H∗ ⊂ H and for m < n it holds that m ∈ H∗ if and only
if m ∈ H. The following results may be useful for computing H∗. Remember
that for a divisor E, `(E) stands for the dimension of L(E).

Proposition 3.2. H∗ = {m ∈ H : `(mQ−D) = `((m− 1)Q−D)}.

Proof. If m < n then C(D,mQ) 6= C(D, (m − 1)Q) if and only if m ∈ H that
is if and only if m ∈ H∗. If m ≥ n then the kernel of the evaluation map
restricted to L(mQ) is ker(ev|L(mQ)) = L(mQ−D). Since m− 1,m ∈ H, then
C(D,mQ) 6= C(D, (m− 1)Q) if and only if both kernels are equal.

Thus, for m ≥ n, and since `((n+ 2g − 1)Q−D) = g and H has g gaps, we
conclude that g elements of {n, . . . , n+ 2g − 1} belong to H∗ while the other g
elements do not.

Corollary 3.3. Let m ≥ n. If m 6∈ H∗ then for all h ∈ H it holds that
m+ h 6∈ H∗.

Proof. If m 6∈ H∗ then there exists a non-zero function f ∈ L(mQ − D) \
L((m − 1)Q − D). Take a function φ ∈ L(hQ) such that v(φ) = h. Then
fφ ∈ L((m+ h)Q−D) \ L((m+ h− 1)Q−D), and hence m+ h 6∈ H∗.

Corollary 3.4. If the divisors D and nQ are linearly equivalent, D ∼ nQ, then
H∗ ∩ {n, . . . , n + 2g − 1} = {n + l1, . . . , n + lg}, hence H∗ = (H ∩ {1, . . . , n −
1}) ∪ {n+ l1, . . . , n+ lg}.

Proof. If D ∼ nQ then n 6∈ H∗ and hence, according to Corollary 3.3, n =
n+ h1, . . . , n+ hg 6∈ H∗. The statement follows by cardinality reasons.

Let f ∈ L(∞Q). If v(f) ∈ H∗ then, by Lemma 3.1, we have ν(ev(f)) =
dim(C(v(f))). For i = 1, . . . , n, let fi ∈ L(∞Q) be such that v(fi) = mi. Thus,
according to Lemma 2.1 (b), B = {ev(f1), . . . , ev(fn)} is a basis of Fnq and the
sequence of codes (Ci) is given by

Ci = 〈ev(f1), . . . , ev(fi)〉 = C(D,miQ), i = 1, . . . , n.

Our sequence (C(D,miQ)) does not contain the code C0 = (0). If we want to
include it (see Section 4 for example) we simply take m0 = −1 and C(D,m0Q) =
(0).

Proposition 3.5. If mi+mj ∈ H∗ then (ev(fi), ev(fj)) is a well behaving pair.
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Proof. For φ1, φ2 ∈ L(∞Q) we have that v(φ1φ2) = v(φ1) + v(φ2). If mi +
mj ∈ H∗ then ν(ev(fi) ∗ ev(fj)) = ν(ev(fifj)) = dim(C(D, v(fifj)Q)) =
dim(C(D, (mi + mj)Q)). If (r, s) < (i, j) then v(frfs) < v(fifj) and hence
ν(ev(fr) ∗ ev(fs)) = ν(ev(frfs)) < dim(C(D, (mi +mj)Q)).

Thus from the bound in Section 2 we get a bound for one-point codes as
follows. For i = 1, . . . , n, consider the sets

Λ∗i = {m ∈ H∗ : m = mi +mj with mj ∈ H∗}.

If m ∈ mi + H \H∗ then m = mi + h for some h ∈ H \H∗ and thus m 6∈ H∗
according to Corollary 3.3. Thus the sets Λ∗i can also be written as Λ∗i = {m ∈
H∗ : m −mi ∈ H} = (mi + H) ∩H∗. According to Propositions 2.2 and 3.5,
we have that wt(c) ≥ #Λ∗r for all c ∈ C(D,mrQ) \ C(D,mr−1Q). Define

d∗(i) := min{#Λ∗r : r ≤ i}.

Then d(C(D,miQ)) ≥ d∗(i), or equivalently

Theorem 3.6. For a non-negative integer m, we have d(C(D,mQ)) ≥ d∗(dim(C(D,
mQ))).

We call this inequality the d∗ bound for one-point codes. Let us remember
that the classical bound on the minimum distance of an code is given by the
Goppa estimate d(C(D,mQ)) ≥ dG(C(D,mQ)) := n − m. d∗ improves the
Goppa bound as the next result shows (see also Proposition 37 in [1]). The first
element in H \H∗ is denoted by π = π(H). Note that π ≥ n.

Proposition 3.7. For all i = 1, . . . , n, we have d∗(i) ≥ dG(C(D,miQ)). If
mi < π − lg then equality holds, d∗(i) = dG(C(D,miQ)).

Proof. For the first statement it suffices to show that #(H∗ \ Λ∗r) ≤ mr for
all r. Since Λ∗i = (mi + H) ∩ H∗, we have H∗ \ Λ∗i ⊆ H \ (mi + H) and this
follows from the fact that #(H \ (mr + H)) = mr (see [10], Lemma 5.15). If
mi + lg < π, then all elements in H \ (mi + H) are smaller than π and hence
H∗ \ Λ∗i = H \ (mi +H).

3.2 d∗ and the generalized order bounds of Beelen and
Duursma-Kirov-Park

The bound d∗ can also be obtained from the generalized order bounds of Beelen
and Duursma-Kirov-Park. Let us show first how to get d∗ from the Beelen
generalized order bound dB stated in [2]. Let mi ∈ H∗ and consider the code
C(D,miQ). The Beelen bound applies to the duals of evaluation codes. Thus,
let W be a canonical divisor with simple poles and residue 1 at all points P ∈
supp(D) and let G = D + W − miQ. It is well known that C(D,miQ) =
C(D,G)⊥ (see [14]). By using the notation as in [2], for r = 0, 1, 2, . . . , consider
the divisors

F (r) := G+ rQ = F
(r)
1 + F

(r)
2 =: (D +W ) + ((r −mi)Q).
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Note that all the divisors F (r), F
(r)
1 , F

(r)
2 above have support disjoint from D.

For a divisor E, let H(Q,E) be the Weierstrass set of Q relative to E,

H(Q,E) = −vQ

 ⋃
deg(E+sQ)≥0

L(E + sQ) \ {0}

 .

In our case, for all r = 0, 1, . . . , we have H(Q,F
(r)
2 ) = H(Q, (r − mi)Q) =

H(Q, 0) = H, the usual Weierstrass semigroup of Q. The Beelen bound states
that

d(C(D,miQ)) ≥ min{#N(F
(r)
1 , F

(r)
2 ) : r = 0, 1, . . . }

where

N(F
(r)
1 , F

(r)
2 ) = {(t, s) : t ∈ H(Q,F

(r)
1 ), s ∈ H(Q,F

(r)
2 ), t+ s = vQ(G) + 1}

= {(t, s) : t ∈ H(Q,D +W ), s ∈ H, t+ s = 1−mi}.

According to the Rieman-Roch theorem, for an integer m it holds that 1−m ∈
H(Q,D+W ) if and only if `(mQ−D) = `((m−1)Q−D). Thus for m ∈ H the
conditions m ∈ H∗ and 1−m ∈ H(Q,D +W ) are equivalent. Consequently

#N(F
(r)
1 , F

(r)
2 ) = #{s ∈ H : 1− (s+mi) ∈ H(Q,F

(r)
1 )}

= #{s ∈ H : s+mi ∈ H∗}

as s ∈ H implies s + mi ∈ H. Finally observe that while the sets Λ∗i and
{s ∈ H : s+mi ∈ H∗} count different objects, they are of the same cardinality:
the map m 7→ m+mi gives a bijection from Λ∗i to {s ∈ H : s+mi ∈ H∗}. Thus,
for one-point codes, the bound d∗ can be seen as a particular case of the Beelen
bound dB , relative to the choice of Q,Q, . . . as infinite sequence of points not in

supp(D) and the divisors F
(r)
1 = D+W,F

(r)
2 = (r−mi)Q. In particular in may

happen that d∗ < dB (for an accurate choice of the infinite sequence of points

and the divisors F
(r)
1 , F

(r)
2 ), in the same way as it may happen that dORD < dB

(see Example 8 of [2]).
Let us show briefly how to obtain d∗ from the generalized order bound of Du-

ursma, Kirov and Park. Consider again the code C(D,miQ). In the formulation
of [4, 6, 5], if c ∈ C(D,miQ) \ C(D,mi−1Q), then

wt(c) ≥ #(∆Q(D −miQ) ∩ {(m−mi)Q : m ≥ mi})

where for a divisor E, ∆Q(E) is defined as

∆Q(E) = {A : L(A) 6= L(A−Q),L(A− E) 6= L(A−Q− E)}.

The same argument as in the case of dB proves that the sets Λ∗i and (∆Q(D −
miQ)∩{(m−mi)Q : m ≥ mi}) are of the same cardinality. This shows that d∗

can also be obtained from the extended Duursma-Kirov-Park order bound.
On the other hand, the choice of the sets Λ∗i (instead of the counting made

in the Beelen and Duursma-Kirov-Park bounds) has some technical advantages.
Firstly it does not involve more divisors that the ones naturally associated to
the code C(D,mQ). And secondly, in contrast to what happens with those
bounds, d∗ allows us to study improved codes very easily. Also it allows us to
extend the same idea to all generalized Hamming weights (see Section 5). In
fact, for these two problems d∗ works even better than the original order bound
dORD. As discussed in Section 4, d∗ extends exactly dORD to one-point codes.
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3.3 Improved codes

Let δ be an integer, 0 < δ ≤ n. In the same way as the order bound allows us
to construct codes with designed minimum distance δ and dimension as large
as possible, see [10], the bound d∗ shows how to construct similar codes from
sequences (C(D,miQ)), see [1]. Specifically, given δ let us consider the improved
code

C(D,Q, δ) = 〈{ev(fi) : #Λ∗i ≥ δ}〉

where fi ∈ L(∞Q) with v(fi) = mi. From Lemma 2.1 (a), and the discussion
before Theorem 3.6, it is clear that the minimum distance of C(D,Q, δ) is at
least δ.

The sequence (Λ∗i ) is said to be monotone for δ if for every i, j such that
#Λ∗i ≥ δ and #Λ∗j < δ we have that i < j. If (Λ∗i ) is monotone for δ it is
clear that C(D,Q, δ) is a usual one-point code, so improved codes only improve
one-point codes for those δ for which the sequence is not monotone. In this case
the code C(D,Q, δ) depends on the choice of the set {f1, . . . , fn}. In fact, if
#Λ∗i = δ and #Λ∗j < δ for some j < i, then v(fi + fj) = v(fi) but in general
ev(fj) 6∈ C(D,Q, δ), hence ev(fi + fj) 6∈ C(D,Q, δ). Thus we have a collection
of improved codes with designed distance δ, depending on the collection of sets
{f1, . . . , fn}.

3.4 Worked examples

We compute H∗ for some examples.

Example 3.8. (Codes on Castle curves) A curve X defined over Fq is said to be
Castle if there is a rational point Q such that the Weierstrass semigroup at Q,
H = H(Q), is symmetric and qh2 + 1 = #X (Fq) (where h2 is the first nonzero
element of H). If D is the sum of all rational points of X except Q, the codes
C(D,mQ) are called Castle codes, see [13]. It is simple to see that for Castle
curves we have D ∼ nQ, hence H∗ ∩ {n, . . . , n+ 2g − 1} = {n+ l1, . . . , n+ lg}
according to Proposition 3.4. In Section 4 we shall see that, being the semi-
group H symmetric, we have H∗ = H \(n+H). Recall that the family of Castle
codes includes Hermitian, generalized Hermitian, Norm-trace, Suzuki, Ree and
many of the most known codes. To study a concrete example, let us consider
the Suzuki curve X over F8 (see [13] again). This curve has genus g = 14 and
65 rational points. A plane model of X is given by the equation Y 8Z2−Y Z9 =
X2(X8 − XZ7). This model is non-singular except at the point (0 : 1 : 0).
Being this singularity uni-branched, the unique point Q lying over (0 : 1 : 0) is
rational. Let us consider the codes C(D,mQ), where D is the sum of all rational
points of X except Q. The Weierstrass semigroup at Q is known to be H =
〈8, 10, 12, 13〉. A straightforward computation gives the sequence (#Λ∗i ): (64,
56, 54, 50, 49, 48, 46, 44, 43, 42, 41, 40, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 28, 26, 26, 24, 23,
22, 21, 20, 21, 18, 20, 16, 18, 16, 14, 13, 14, 10, 14, 8, 13, 10, 10, 9, 9, 6, 9, 8, 4, 6, 5, 5, 4, 6,
5, 3, 2, 3, 3, 2, 1, 1).

This sequence is monotone for δ = 3, 5, 6, 9, 13, 14, 18, 20, 21. For example the
code C(D, 70Q) has dimension 55 and distance at least 4 (that is d∗(55) = 4),
whereas C(D,Q, 4) has dimension 57.

Example 3.9. (Two families of codes from a curve over F16) The computation
of H∗ for long codes can be carried often to the computation of H∗ for much
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shorter codes. Let C(D,mQ) be a code and let n′′ be the largest integer for
which equality in the Goppa bound holds. Then n′′ < n and there exists a
divisor D′′ ≤ D such that D′′ ∼ n′′Q. Hence, for m ≥ n we have `(mQ−D) =
`((m− n′′)Q−D′) where D′ = D−D′′. This leads us to considering the codes
C(D′,m′Q) of length n′ = n − n′′. To give an example of this situation let us
consider the curve X over F16 defined by the affine equation

y15 = p(x) :=
x(x14 − 1)

x− 1
= x14 + x13 + · · ·+ x.

Let us study the rational points of X . Firstly there is just one point Q over
x =∞. Regarding the affine points, note that the polynomial p(x) has 2 roots
in F16, namely 0 and 1. In fact, if α 6= 0, 1 is a root of p(x), then α7 = 1 and
7 - 15. These roots give two points, R1 = (0, 0) and R1 = (1, 0). We consider
now the morphism φ = x, φ : X → P1(F16) of order 15, where F16 denotes the
algebraic closure of F16. For α ∈ F16, α 6= 0, 1, from the equation of X , we have
y15 = α(α14 − 1)/(α − 1) = 1, so that there are 15 rational points over each
φ(α). Write

div(x− α) =

15∑
i=1

P iα − 15Q.

Thus X has (16 − 2) · 15 + 2 + 1 = 213 rational points. To compute its genus
observe that

y15 = x(x− 1)(x− α1)2 . . . (x− α6)2,

where α7
i 6= 1, αi 6∈ F16. As the extension F16(X )|F16(x) is Kummer, the genus

can be computed via the Riemann-Hurwitz formula [14],

2g − 2 = 15(−2) + 9(14) = 96

and g = 49. Note that X attains the record of rational points among all curves
genus 49 over F16. Finally let us compute the Weierstrass semigroup H at
Q. We have seen that −vQ(x) = 15. In the same way div∞(y) = 14Q, so
14, 15 ∈ H. Let

z := y8/((x− α1) · · · (x− α6)).

It is easy to compute div∞(z) = 22Q, hence 22 ∈ H and thus 〈14, 15, 22〉 ⊆ H.
Since both semigroups have equal genus we conclude that equality holds. Then

H(Q) =〈14, 15, 22〉 = {0, 14, 15, 22, 28, 29, 30, 36, 37, 42, 43, 44, 45, 50, 51, 52, 56, 57,

58, 59, 60, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87,

88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, . . .}.

Note that 2g − 1 = 97 ∈ H and so H is not symmetric. In order to construct
codes from this curve let us consider the divisors D′ = R1+R2, and for α ∈ F16,
α 6= 0, 1

D′′α =

15∑
i=1

P iα , D
′′ =

∑
α

D′′α.

According to our previous computations, D′′α ∼ 15Q and hence D′′ ∼ 210Q.
Let D = D′ + D′′ be the sum of all affine points of X , n = 212 = deg(D) and
consider the codes of length n, C(D,mQ), m = 0, . . . , n+2g−1 = 309. In order
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to determine H∗ = H∗(D,Q) we have to compute `(mQ−D) for m ≥ n. But
since D′′ ∼ 210Q, then `(mQ −D) = `((m − 210)Q) −D′). This fact leads us
to considering the codes C(D′,m′Q) for m′ = 2, . . . , 2g+ 1 = 99. The length of
these codes is n′ = 2 and C(D′, 0Q) = 〈(1, 1)〉. Thus there exists just one m′ for
which the dimension increases. Clearly, this is not the case for any gap of H, so
m′ must be a non-gap. Looking at the generator matrix (1, 1) of C(D′, 0Q) we
conclude that this m′ is the smallest order of a function f in L(∞Q) such that
f(R1) 6= f(R2). Such a function is clearly f = x and hence m′ = 15. Thus,

H(D,Q)∗∩{n, . . . , n+2g−1} = {n−2+l : l is a gap of H and l ≥ 2}∪{n−2+15}.

Once H∗ is known we can compute the dimensions of all codes C(D,mQ) and
apply Theorem 3.6 to estimate the minimum distances. Note that for large m we
do not obtain good parameters. In fact, as D′′α ∼ 15Q, for all m < n, m multiple
of 15, the true minimum distance of C(D,mQ) equals the Goppa estimate. In
particular the minimum distance distance of C(D, 210Q) is d = 2. The bound
d∗ gives d ≥ 2 for m = 224 (that is, for dimension k ≤ 175) and hence all codes
C(D,mQ), m = 210, . . . , 224 have true minimum distance d = 2.

In order to obtain codes with better parameters (that is, better minimum
distance) the usual approach is to consider another divisor G. We shall show
that this goal can also be accomplished by taking a slightly different D. Consider
the codes C(D′′,mQ) of length n′′ = 210. Then the function from which the
codeword of weight 2 arises belongs to the kernel of the evaluation map. The
set H∗ = H∗(D′′, Q) can be now computed by using Corollary 3.4, and H∗ ∩
{n′′, . . . , n′′ + 2g − 1} = {n′′ + l1, . . . , n

′′ + lg}, where l1, . . . , lg are the 49 gaps
of H. It is not necessary to apply the bound d∗ to see that the minimum
distance of these codes is larger for m ≥ n′′. For example, from the improved
Goppa bound we know that the minimum distance of C(D′′, 210Q) satisfies
d ≥ n′′ − 210 + γ2 = γ2, where γ2 is the usual gonality of X , see [11] . It is
not easy to compute γ2, but at the first sight we have γ2 ≥ #X (F16)/#P1(F16),
hence γ2 ≥ 13 (so γ2 = 13 or 14) and d ≥ 13 as well.

4 Relating the bounds d∗ and dORD

As we noted above, in some cases the generalized order bounds may give different
results than the original order bound, see [2] Example 8. Likewise, also the
Andersen-Geil bound, from which we have obtained d∗, can be very different
from the original order bound, see Example 51 of [1]. In this Section we shall
compare d∗ and the original order bound dORD. This comparison can be done
over sequences of one-point codes such that their duals are also one-point. We
can slightly relax this condition by imposing that the duals are isometric to
one-point codes.

4.1 The isometry-dual condition

Let C,D, be two linear codes in Fnq and let x ∈ (F∗q)n be an n-tuple of non-zero
elements. We say that C and D are isometric according to x (or simply x-
isometric) if the map χx : Fnq → Fnq given by χx(v) = x∗v satisfies χx(C) = D.
Note that χx is a true linear isometry for the Hamming distance, hence isometric
codes have the same parameters. The dual of a code C is denoted by C⊥.
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Proposition 4.1. Let C,D be two linear codes in Fnq . If χx(C) = D then

χx(D⊥) = C⊥.

Proof. Let c ∈ C and d = χx(c) ∈ D. For all v ∈ Fnq we have v ·d = v ·(x∗c) =

(x ∗ v) · c, hence v ∈ D⊥ if and only if χx(v) ∈ C⊥.

Let us recall that we have fixed a basis B = {b1, . . . ,bn} of Fnq and the
associated codes Ci = 〈b1, . . . ,bi〉, i = 0, . . . , n.

Definition 4.2. A sequence of codes (Ci)i=0,...,n is said to satisfy the isometry-
dual condition if there exists x ∈ (F∗q)n such that Ci is x-isometric to C⊥n−i for
all i = 0, 1, . . . , n.

Let us study the case of AG codes. We consider the sequence of codes (C(D,
miQ))i=0,...,n arising from the curve X and the associated setH∗ = {m1, . . . ,mn}.
In addition let m0 = −1 and C(D,m0Q) = (0). If (C(D,miQ)) satisfies the
isometry-dual condition then both d∗ and the order bound dORD can be used
to estimate the minimum distance of these codes. Let us remember that we
are assuming that n > 2g + 2. Remember also that the dual of C(D,mQ) is
C(D,D + W − mQ), where W is a canonical divisor with simple poles and
residue 1 at every point in supp(D) (see [14]).

Proposition 4.3. The following statements are equivalent.

(a) The sequence (C(D,miQ))i=0,...,n satisfies the isometry-dual condition.

(b) The divisor (n+ 2g − 2)Q−D is canonical.

(c) n+ 2g − 1 ∈ H∗.

Proof. Let us consider the divisor E = (n + 2g − 2)Q − D and for an inte-
ger m write m⊥ = n + 2g − 2 − m. ((a)⇔(b)) Assume that the sequence
(C(D,miQ))i=0,...,n satisfies the isometry-dual condition. Let m be such that
2g ≤ m ≤ n−2 (since n > 2g+2, such an m does exist). Then 2g ≤ m⊥ ≤ n−2
and hence m,m⊥ ∈ H∗. In particular dim(C(D,mQ)) + dim(C(D,m⊥Q)) = n.
Since the sequence (C(D,miQ))i=0,...,n satisfies the isometry-dual condition we
have that C(D,D+W −mQ) = C(D,mQ)⊥ is isometric to C(D,m⊥Q). This
implies that the divisors D+W −mQ and m⊥Q are equivalent (see [12]). Then
W ∼ (m + m⊥)Q −D = E and this divisor is canonical. Conversely, if E is a
canonical divisor then there is a rational function f such that E + div(f) = W .
In particular f has neither poles nor zeros in supp(D). Let x = evD(f). Then
we have D+W −mQ = m⊥Q+ div(f) hence C(D,mQ)⊥ = x ∗C(D,m⊥Q) =
χx(C(D,m⊥Q). ((b)⇔(c)) Since deg(E) = 2g − 2, then E is canonical if and
only if `(E) = g. By the Riemann-Roch theorem (see [10], Theorem 2.55), we
have `(E +Q) = g hence E is canonical if and only if `(E) = `(E +Q), that is,
if and only if n+ 2g − 1 ∈ H∗ according to Proposition 3.2

Example 4.4. (Codes on Castle curves) Let X be a Castle curve and (C(D,
miQ))i=0,...,n be a sequence of Castle codes of length n arising from X (see Ex-
ample 3.8). Since D ∼ nQ and the semigroup H(Q) is symmetric, Proposition
3.4 implies that (C(D,miQ))i=0,...,n satisfies the isometry-dual condition.
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Example 4.5. (Codes on the Klein quartic) Let us consider the Klein quartic
X of projective equation X3Y + Y 3Z + Z3X = 0 and genus g = 3. Over
the field F8, X has 24 rational points (the maximum allowed by Weil-Serre
bound) and a rich geometrical structure. Codes coming from this curve are
usually constructed by using the divisors G = m(Q1 + Q2 + Q3), where Q1 =
(1 : 0 : 0), Q2 = (0 : 1 : 0) and Q3 = (0 : 0 : 1), since this choice has some
technical advantages (see [3],[8],[10]). However, one-point codes over X can also
be considered. Let Q = Q2, D′ = Q1 + Q3, D′′ = P1 + · · · + P21 be the sum
of all rational points except Q1, Q2, Q3 and let D = D′ + D′′. It is easy to see
that div(x) = 3Q3 − 2Q2 −Q1 and div(y) = 2Q1 +Q3 − 3Q2. Then div(xy) =
Q1 + 4Q3 − 5Q2 and div(x2y) = 7Q3 − 7Q2. Then the Weierstrass semigroup
H = H(Q) is generated by 3,5 and 7. In particular {1, y, xy, y2, x2y, . . . } is a
basis of L(∞Q). In order to compute H∗ = H∗(D,Q) we can proceed as in
Example 3.9. By considering the morphism φ = y, φ : X → P1(F8) of degree 3,
we observe that D′′ ∼ 21Q. This fact leads us to consider the codes C(D′,mQ)
of length 2 and the set H∗(D′, Q). Since x2y is the first non constant function in
the above basis for which Q1 is not a zero, we deduce that H∗(D′, Q) = {0, 7}.
Then 21+7 = 28 = n+2g−1 ∈ H∗(D,Q) and the sequence of codes C(D,miQ)
satisfies the isometry-dual condition. As we shall se in Lemma 4.7, this condition
provides the whole set H∗ and H∗ = {0, 3, 5, 6, 7, . . . , 22, 23, 25, 28}. A direct
computation shows that for this sequence of codes, both d∗ and the order bound
give the true minimum distance for all m.

Example 4.6. Let us consider the sequence of codes of length n = 212 intro-
duced in Example 3.9. Here n+2g−1 = 309 6∈ H∗ hence this sequence does not
satisfy the isometry-dual condition. As a consequence dORD cannot be applied
to estimate the minimum distances.

4.2 The bounds for isometry dual codes

Let (C(D,miQ))i=0,...,n be a sequence of one-point codes satisfying the isometry-
dual condition. For this sequence the set H∗ is particularly simple and can be
computed just in terms of the Weierstrass semigroup H.

Lemma 4.7. If (C(D,miQ)) satisfies the isometry-dual condition, then H∗ =
{m ∈ H : n+ 2g − 1−m ∈ H}.

Proof. Let m ∈ H. From the Riemann-Roch theorem, `(mQ −D) = m − n +
1− g + `((n+ 2g − 2−m)Q) and hence `(mQ−D) = `((m− 1)Q−D) if and
only if `((n + 2g − 2 − m)Q) 6= `((n + 2g − 1 − m)Q), that is, if and only if
n+ 2g − 1−m ∈ H.

Thus for isometry-dual sequences the set H∗ is symmetric in the sense that
for an integer m it holds that m ∈ H∗ if and only if n+ 2g − 1−m ∈ H∗ (and
conversely this property implies the isometry-dual condition). It follows that
n+2g−1−mi = mn−i+1. We must not confuse this kind of symmetry with the
symmetry of the semigroup H. Let us remember that a semigroup H of genus g
is called symmetric if 2g−1 6∈ H or equivalently (since its largest gap lg satisfies
lg ≤ 2g − 1) if lg = 2g − 1. For symmetric semigroups it holds that m ∈ H if
and only if lg−m 6∈ H, see [10]. When the Weierstrass semigroup H = H(Q) is
symmetric, (2g − 2)Q is a canonical divisor, hence the isometry-dual property
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is equivalent to D ∼ nQ. Since in this case the condition n + 2g − 1 −m ∈ H
is equivalent to m− n 6∈ H, or m 6∈ n+H, then the set H∗ is given by

H∗ = H \ (n+H).

Let us return to the general case of H, where it might not be symmetric.
The symmetrical description of H∗ given by Lemma 4.7 allows us to write H∗

in the following way

Proposition 4.8. If the sequence (C(D,miQ)) satisfies the isometry-dual con-
dition, then H∗ = {0, . . . , n+2g−1}\{l1, . . . , lg, n+2g−1−lg, . . . , n+2g−1−l1}.

Proof. We have l1, . . . , lg 6∈ H∗. In the same way, if l is a gap of H then
n+2g−1−(n+2g−1− l) = l 6∈ H and hence n+2g−1− l 6∈ H∗. Furthermore,
since lg < n, then lg < n + 2g − 1 − lg and hence #{l1, . . . , lg, n + 2g − 1 −
lg, . . . , n+ 2g − 1− l1} = 2g. By cardinality reasons we get the result.

For i = 1, . . . , n, let us consider the set Li = {mi + l1, . . . ,mi + lg}.

Proposition 4.9. If (C(D,miQ)) satisfies the isometry-dual condition, then
#Λ∗i = n− i+ 1−#(Li ∩H∗).

Proof. Let L = {l1, . . . , lg, n+2g−1−lg, . . . , n+2g−1−l1}, and for i = 1, . . . , n,

B
(1)
i = {mj ∈ H∗ : mi +mj < n+ 2g,mi +mj 6∈ H∗},

B
(2)
i = {mj ∈ H∗ : mi +mj ≥ n+ 2g}.

Clearly #Λ∗i = #(H∗ \ (B
(1)
i ∪ B(2)

i )) = n − #B
(1)
i − #B

(2)
i . Since H∗ ⊆ H

and the sum of two non-gaps is again a non-gap, we have B
(1)
i = {mj ∈ H∗ :

mi + mj ∈ L} = {n + 2g − 1 − lg − mi, . . . , n + 2g − 1 − l1 − mi} ∩ H∗.
According to Lemma 4.7, #B

(1)
i = #(Li ∩H∗). Besides #B

(2)
i = i− 1. In fact,

if mi +mj ≥ n+ 2g, from Lemma 4.7 we can write mj = n+ 2g − 1−mt with
t = n− j + 1. Then n+ 2g − 1 +mi −mt > n+ 2g − 1 if and only if mi > mt

and there exist i− 1 such choices for mt.

Then d∗ can be written for isometry-dual codes as

d(C(D,miQ)) ≥ d∗(i) = min{n− r + 1−#(Lr ∩H∗) : r ≤ i}.

Let us prove now that d∗ and the strict order bound with respect to the
evaluation map evD, dORD,ev ([10], Section 4.3), give the same result when
applied to codes satisfying the isometry-dual condition. Let mi ∈ H∗ and let us
compute both bounds for C(D,miQ). If mi < n− lg, according to Proposition
3.7 and Theorem 4.7 in [10], both bounds are equal to Goppa bound.

In order to compute the order bound, we first need the duals of the codes
C(D,mrQ). As we know, C(D,mrQ)⊥ is isometric to C(D, (n+2g−2−mr)Q).
Let hs, hs+1 ∈ H be such that hs ≤ n+2g−2−mr < hs+1. Then C(D,hsQ) =
C(D, (n + 2g − 2 −mr)Q) and hence C(D,hsQ)⊥ is isometric to C(D,mrQ).
Note that C(D,mrQ) has dimension r, so C(D,hsQ) has dimension n − r.
Furthermore, Lemma 4.7 implies that n + 2g − 1 − mr ∈ H∗ hence hs+1 =
n+ 2g − 1−mr = mn−r+1 and dimC(D,hs+1Q) = n− r + 1.
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For h ∈ H let us consider the set

A[h] = {t ∈ H : h− t ∈ H}.

The strict order bound on the minimum distance of C(D,miQ) together with
our previous discussion, imply that

d(C(D,miQ)) ≥ dORD,ev(C(D,miQ))

:= min{#A[h] : h ∈ H∗, h ≥ n+ 2g − 1−mi}
= min{#A[n+ 2g − 1−mr] : mr ∈ H∗, r ≤ i}
= min{#A[mn−r+1] : r ≤ i},

where the last two equalities follow from 4.7 and the fact that mn−r+1 = n +
2g − 1−mr.

Lemma 4.10. If h ∈ H and l 6∈ H then l − h 6∈ H.

Proof. If l − h = h′ ∈ H then l = h+ h′ and hence l ∈ H.

Proposition 4.11. Let mr ∈ H∗. If (C(D,miQ)) satisfies the isometry-dual
condition, then #Λ∗r = #A[mn−r+1].

Proof. Let us compute #A[n + 2g − 1 −mr] + #(Lr ∩H∗). For a given gap l
of H, we have mr + l ∈ H∗ if and only if n+ 2g − 1−mr − l ∈ H∗. Thus

#(Lr ∩H∗) = #{l ∈ Gaps(H) : n+ 2g − 1−mr − l ∈ H∗}
= #{h ∈ H∗ : n+ 2g − 1−mr − h ∈ Gaps(H)},

so #A[n+2g−1−mr]+#(Lr∩H∗) = #{h ∈ H : h ≤ n+2g−1−mr}−#{h ∈
H \H∗ : h ≤ n+ 2g−1−mr, n+ 2g−1−mr−h ∈ Gaps(H)}. Let us note that
for all h ∈ H \H∗, h ≤ n+ 2g− 1−mr, it holds that n+ 2g− 1−h ∈ Gaps(H).
In fact, according to Lemma 4.7, we would otherwise have h ∈ H∗. Then,
from Lemma 4.10, n + 2g − 1 − mr − h ∈ Gaps(H). So {h ∈ H \ H∗ : h ≤
n+2g−1−mr, n+2g−1−mr−h ∈ Gaps(H)} = {h ∈ H\H∗ : h ≤ n+2g−1−mr}
and hence #A[n+2g−1−mr]+#(Lr∩H∗) = #{h ∈ H∗ : h ≤ n+2g−1−mr} =
dim(C(D, (n+ 2g − 1−mr)Q)) = n− r + 1.

Corollary 4.12. For isometry-dual codes, we have dORD,ev(C(D,miQ)) =
d∗(i).

Therefore d∗ and the strict order bound are the same for isometry-dual codes.

4.3 More on improved codes

In Section 3.3 we have considered the improved code C(D,Q, δ) = 〈{ev(fi) :
#Λ∗i ≥ δ}〉, for 1 ≤ δ ≤ n. It is analogous to the improved code C̃(D,Q, δ)
introduced by Feng and Rao, [7, 10], based on the order bound:

C̃(D,Q, δ) = 〈{ev(fi) : #A[mi] < δ}〉⊥.

It is well known that the minimum distance of C̃(D,Q, δ) is at least δ. When
the sequence (C(D,miQ)) is isometry-dual, Proposition 4.11 allows us to write
C̃(D,Q, δ) in terms of the sets Λ∗i ’s,

C̃(D,Q, δ) = 〈{ev(fi) : #Λ∗n+1−i ≥ δ}〉⊥.
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Then it is natural to wonder about the relation between these two improved
codes C̃(D,Q, δ) and C(D,Q, δ).

Proposition 4.13. If the sequence (C(D,miQ)) satisfies the isometry-dual con-
dition, then C(D,Q, δ) and C̃(D,Q, δ) have the same dimension.

Proof. If C(D,Q, δ) is generated by t vectors then C̃(D,Q, δ) is defined by n− t
independent parity checks.

If the sequence (Λ∗i ) is monotone for δ then C(D,Q, δ) is a one-point code,
hence C(D,Q, δ) and C̃(D,Q, δ) are isometric. Let us study the general case.

Lemma 4.14. Let (Ci = 〈b1, . . . ,bi〉) be a sequence of codes that satisfies the
isometry-dual condition, χx(Ci) = C⊥n−i. Then for i = 1, 2, . . . , n, we have

χx(bi) ∈ C⊥n−i \ C⊥n−i+1.

Proof. Follows directly from the definition of isometry-dual sequence.

Let us remember that the improved codes C(D,Q, δ) and C̃(D,Q, δ) depend
on the choice of functions f1, . . . , fn in L(∞Q) such that v(fi) = mi.

Lemma 4.15. If (C(D,miQ)) satisfies the isometry-dual condition then given
a set {f1, . . . , fn} of functions in L(∞Q) with v(fi) = mi, there exists a similar
set {f ′1, . . . , f ′n} such that χx(ev(f ′i))·ev(fj) 6= 0 holds if and only if j = n−i+1.

Proof. By Lemma 4.14 and the isometry-dual condition, the sets {f1, . . . , fn}
and {f ′1, . . . , f ′n} will satisfy

(χx(ev(f ′i))) · ev(fj) = 0 for j = 1, . . . , n− i
(χx(ev(f ′i))) · ev(fn−i+1) 6= 0.

So, we have to determine a particular set {f ′1, . . . , f ′n} that in addition satisfies

(χx(ev(f ′i))) · ev(fj) = 0 for j = n− i+ 2, . . . , n. (1)

We show the existence of such a set by induction. Note first that given arbitrary
{f1, . . . , fn} then the condition (1) is trivially satisfied for i = 1 if we choose
f ′1 = f1. Assume next that (1) holds for all values of i = 1, . . . , s, where s
is some number less than n. That is, for each i ∈ {1, . . . , s} the only j such
that χx(ev(f ′i)) · ev(fj) 6= 0 is j = n − i + 1. Denote by aj the value of
χx(ev(f ′i)) · ev(fj), j = n− s+ 1, . . . , n. The function

f ′s+1 = fs+1 −
s∑
i=1

ai
χx(ev(f ′i)) · ev(fn+1−i)

f ′i

satisfies (1) as

χx(ev(f ′s+1)) · ev(fj) =

χx(ev(fs+1)) · ev(fj)−
( s∑
i=1

ai
χx(ev(f ′i)) · ev(fn−i+1)

χx(ev(f ′i)) · ev(fj)

)
.
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Proposition 4.16. Assume
(
C(D,m1Q)

)
satisfies the isometry-dual condition.

For every choice of {f1, . . . , fn} of functions in L(∞Q) with v(fi) = mi, there
exists a similar set {f ′1, . . . f ′n} such that the code C̃(D,Q, δ) defined from the
first set is isometric to the code C(D,Q, δ) defined from the latter set. A similar
result holds the other way around.

Proof. By Propositions 4.9 and 4.11 we have #Λ∗i = #A[m−n+ 1− i]. Choos-
ing {f ′1, . . . , f ′n} such that Lemma 4.15 is satisfied and applying the definitions
of C(D,Q, δ) and C̃(D,Q, δ) proves the first claim. The last claim follows by
symmetry.

5 Generalized Hamming weights

The same ideas used to obtain the bound d∗ for the minimum distance can be
applied to all generalized Hamming weights (see [1]). Let us remember that
given a set D ⊆ Fnq , the support of D is defined as

supp(D) =
⋃
v∈D

supp(v).

Let C be a code of dimension k. For r = 1, . . . , k, the r-th generalized Hamming
weight of C is defined as

dr(C) = min{#supp(D) : D is an r-dimensional linear subspace of C},

and the sequence d1(C), . . . , dk(C), is called the weight hierarchy of C. Let
us first look a general bound on the dr(C)’s. Recall that we have a basis
B = {b1, . . . ,bn} of Fnq and codes Ci = 〈b1, . . . ,bi〉.

Lemma 5.1. Let D ⊆ Fnq be a linear subspace of dimension r and let {c1, . . . , cr}
be a basis of D. Then #supp(D) ≥ # ∪i=1,...,r {ν(bν(ci) ∗ bj) : j ∈ Λν(ci)}.

Proof. Given D, let us consider the space V (D) = {v ∈ Fnq : supp(v) ⊆
supp(D)}. Since #supp(D) = dim(V (D)) and supp(D) = supp(c1) ∪ · · · ∪
supp(cr), we have that V (D) = V (c1) + · · ·+ V (cr) and the statement follows
from the results in Section 2.

Theorem 5.2. For r = 1, . . . , i, the r-th generalized Hamming weight of Ci
satisfies

dr(Ci) ≥ min
1≤j1<···<jr≤i

#

 ⋃
j∈{j1,...,jr}

{ν(bj ∗ bt) : t ∈ Λj}

 .

Proof. According to Lemma 2.1 (c), every linear subspace D of Ci has a basis
{c1, . . . , cr} such that 1 ≤ ν(c1) < · · · < ν(cr) ≤ i. Conversely, given vectors
{c1, . . . , cr} satisfying the above condition, 〈c1, . . . , cr〉 is a vector subspace of
Ci of dimension r. Then the result is a consequence of Lemma 5.1.

This result is easily translated to one-point AG codes. With the notation as
in Section 3, we have codes C(D,mQ) and Ci = C(D,miQ). We showed that
#{ν(bj ∗ bt) : t ∈ Λj}) ≥ #Λ∗j . Thus we have
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Theorem 5.3. Let m be a non-negative integer. For r = 1, . . . , i = dim(C(D,mQ)),
the r-th generalized Hamming weight of C(D,mQ) satisfies

dr(C(D,mQ)) ≥ d∗r(i) := min
1≤j1<···<jr≤i

#(Λ∗j1 ∪ · · · ∪ Λ∗jr ).

This result is similar to the corresponding one for the order bound in [9].
Also similar results to the ones contained in this section can be obtained for
improved codes as well.
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